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Abstract 

Almost since the invention of the laser, frequency conversion of optical pulses via non- 

linear processes has been an area of active interest. However, third harmonic generation 

using ~(~1 (THG) in solids is an area that has not received much attention because of ma- 

terial damage limits. Recently, the short, high-intensity pulses possible with chirped-pulse 

amplification (CPA) laser systems allow the use of intensities on the order of 1 TW/cm2 

in thin solids without damage. 

As a light source to examine single-crystal THG in solids and other high field inter- 

actions, the design and construction of a Ti:sapphire-based CPA laser system capable of 

ultimately producing peak powers of 100 TW is presented. Of special interest is a novel, 

all-reflective pulse stretcher design which can stretch a pulse temporally by a factor of 

20,000. The stretcher design can also compensate for the added material dispersion due 

to propagation through the amplifier chain and produce transform-limited 45 fs pulses 

upon compression. A series of laser-pumped amplifiers brings the peak power up to the 

terawatt level at 10 Hz, and the design calls for additional amplifiers to bring the power 

level to the 100 TW level for single shot operation. 

The theory for frequency conversion of these short pulses is presented, focusing on 

conversion to the third harmonic in single crystals of BBO, KD*P, and d-LAP (deuterated 

. . . 
111 



I-arginine phosphate). Conversion efficiencies of up to 6% are obtained with 500 fs pulses 

at 1053 nm in a 3 mm thick BBO crystal at 200 GW/cm 2. Contributions to this process 

by unphasematched, cascaded second harmonic generation and sum frequency generation 

are shown to be very significant. The angular relationship between the two orders is 

used to measure the tensor elements of C = xt3)/4 with Crs = -1.8 x 1O-23 m2/V2 

and .15Cri + .54Crs = 4.0 x 1O-23 m2/V2. Conversion efficiency in d-LAP is about 20% 

that in BBO and conversion efficiency in KD*P is 1% that of BBO. It is calculated that 

conversion efficiencies of 30-40% are possible at intensities of 600-800 GW/cm2, which is 

the operating level of the Petawatt laser at LLNL. The main limiting factors are phase 

modulation and material damage. 
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Chapter 1 

Introduction 

With the advent of the laser in the early 196Os,l~~ it became possible to produce electric 

fields whose magnitude is sufficient to readily probe nonlinear material response functions. 

Within a year, the generation of the second harmonic of the laser light was observed,3 and 

quickly thereafter, the theory behind such nonlinear interactions had been developed.4v5 

Soon, several nonlinear optical phenomena had been discovered and studied in a large 

range of solids, liquids, and gases, thereby giving rise to the field of nonlinear optics. 

Second harmonic generation (SHG), third harmonic generation (THG), sum and difference 

frequency generation (SFG and DFG), self-phase-modulation (SPM), stimulated Raman 

scattering (SRS), and stimulated Brillouin scattering (SBS) are but a few of the many 

processes which have been observed. 

Nonlinear optics is germane whenever high intensity electromagnetic radiation inter- 

acts with matter. In solid matter, while some interactions involving the third-order nonlin- 

earity such as self-phase modulation and self-focusing are significant, frequency conversion 

processes have typically been limited to those involving the second-order nonlinearity, and 

so the nonlinear media has been required to be crystalline with no center of inversion. The 



technique of using birefringence to match the phase velocities of the interacting waves6’7 

requires that the crystal have significant birefringence. Higher order interactions in solids 

are not typically possible because very high intensities are needed, and solid media damage 

before efficient conversion can be achieved via higher-order nonlinearities. Early attempts 

at direct THG (a third-order process) met with very poor conversion efficiency,8-11 and the 

process has been mostly neglected since. Work has continued in the area of higher-order 

nonlinear processes in gases and liquids where material damage is not a concern.‘” 

Recently, however, the development of the technique known as chirped-pulse amplifi- 

cation (CPA)13*14 has made possible the construction of terawatt and even petawatt (1015 

W) class lasers. l5 Such high powers have been used in focused beams to explore very 

high-order nonlinearities in gases. This same technology, though, can also used to explore 

higher-order electronic responses in solids because the material intensity damage threshold 

increases as the pulse length decreases. 16J7 With the subpicosecond pulse lengths that are 

typical of CPA lasers, intensities of over 1 TW/cm2 can propagate short distances through 

solid media without damaging the material. 

This increase in intensity and the correspondingly larger nonlinear interactions does 

not come without other difficulties being introduced. The short pulse lengths of CPA lasers 

and, as required by the uncertainty principle, the associated large bandwidths complicate 

the frequency conversion process. Because of the dispersion of the linear refractive indices 

of materials, only a single set of frequencies is phasematched for a given configuration. In 

order to obtain efficient conversion, we require that the phasematching properties of the 

interaction be relatively insensitive to frequency. This is the same as requiring that both 

the phase and group velocities match for the interacting waves.‘” Otherwise the pulses 

will walk off from each other in time over a relatively short distance. There have been a 



number of methodologies proposed for SHG18-23 to minimize this effect. In addition, the 

fact that the intensities are so high (in excess of 100 GW/cm2) that other, higher-order 

nonlinearities are efficiently excited, can result in reduced gain for the desired effect. 

In spite of these difficulties, the high intensities available from CPA lasers open op- 

portunities to investigate interactions which to this date had been relatively unexplored. 

One such effect is to generate the third harmonic (THG) directly from the fundamental 

frequency of a laser, combining three photons to create light at three times the frequency 

in one interaction. This mechanism of generating the third harmonic was explored within 

a few years of the creation of the laser, but with little success. The idea was abandoned in 

favor of using two crystals with the first phasematched for SHG followed by a second crys- 

tal phasematched for SFG of the fundamental and the second harmonic. For long pulses 

without the bandwidth problems mentioned above, very high conversion efficiencies (up 

to 8O%)24 to the third harmonic have been achieved. In fact, it is this two crystal process 

that has become to be denoted by THG today. In this work, when there is a possibility 

of confusion, single-crystal THG will refer to the direct conversion to the third harmonic 

in a single crystal, and two-crystal THG will refer to process involving SHG and SFG in 

two crystals. 

The use of two crystals becomes more problematic for sub-picosecond pulse lengths due 

to the temporal walkoff due to group velocity mismatch (GVM) between the fundamental 

and its harmonics. Not only is the mismatch worse for the third harmonic wave, a delay 

device must be introduced between the crystals in order to have the fundamental and 

second harmonic wave overlap in time at the second crystal. This has resulted in conversion 

efficiencies to the third harmonic for sub-picosecond pulses to be limited to 10-20%.25 

Finally, there is a desire to be able to efficiently triple the Petawatt laser at LLNL, but 



GVM coupled with self-focusing concerns prohibit the use of the standard, two-crystal 

tripler arrangement. 

In the last twenty years, single-crystal THG has been tried every so often26-2g with 

somewhat better results as the pulse lengths became shorter and intensities increased, 

particularly in BBO. In the low-drive regime, the amount of third harmonic light generated 

will increase as the third power of the incident intensity so an increase in the input intensity 

by a factor of ten will increase the output intensity by three orders of magnitude. Thus 

one would expect that the large intensities made possible by CPA lasers might enable one 

to achieve relatively good production of tripled light using a single crystal. 

The outline of this dissertation, then, is to first describe the design and operation of a 

CPA laser system ultimately capable of producing pulses with peak powers of 100 TW. To 

achieve powers of this magnitude with pulse energies achievable with a “tabletop” system, 

it is required that the temporal pulse length to be on the order of 50 femtoseconds which 

will influence several design considerations. In particular, a unique all-reflective stretcher 

design was developed in order to support the bandwidth while avoiding some of the aber- 

rations present in most transmissive designs. This design allows for easy compensation of 

the material dispersion of the laser system, thereby permitting the use of a regenerative 

amplifier for ease of use and energy stability. Following this discussion on the construction 

of the laser system, the aspects of nonlinear optics pertinent to high intensity frequency 

conversion will be discussed. In particular, it has been postulated and calculated that un- 

phasematched second-order interactions can significantly contribute to THG,28y30t31 but 

there is no conclusive experimental confirmation of this. Finally, the production of UV 

light via single-crystal THG will be experimentally investigated in three crystalline mate- 

rials: KD*P, BBO, and d-LAP. Conclusive evidence for the relative contributions between 



second- and third-order nonlinearities is obtained, and accurate measurements are made 

of the tensor elements of the third-order susceptibility x t3). Also, it should be noted that 

throughout this work, c and X denote the speed of light and the wavelength, respectively, 

in vacuum. 



Chapter 2 

Design of 100 TW Laser System 

Achievable peak powers in moderate-scale lasers have typically been limited to less than 

a few gigawatts because of material damage considerations. It is well known that at 

intensities on the order of l-10 GW/cm 2 laser pulses undergo self-focusing due to the 

intensity dependent nonlinear refractive index. This leads to a deterioration of the beam 

quality and can lead to catastrophic damage of the material through which the beam 

passes. To reach high powers without damage, it has been necessary to use large aperture 

beams as is common with the large fusion lasers. In fact, this problem is exacerbated 

as the temporal pulse length decreases because of the inverse proportionality of the laser 

intensity with the pulse length. For example, a 100 fs pulse will have a peak power of 10 

GW with a pulse energy of only 1 mJ. However, for short pulse lasers, it is possible to 

make use of the associated large spectral bandwidths to expand the pulse in time prior to 

amplification as well as in space, thereby reducing the intensity while maintaining smaller 

amplifier apertures. This technique of expanding the pulse by imposing a large frequency 

chirp (a time-dependent frequency) is know as chirped-pulse amplification (CPA)r3,14 and 

now has been used by many groups in the last few years to generate even tens of terawatts 



of peak laser power in systems that are room-sized.32-37 

Recently, the peak powers achievable with CPA lasers systems has been raised yet 

again with 100 TW and 1 PW (1 petawatt equals 1015 Watts) being produced at LLNL.38s3g 

These tremendous peak powers were produced even though the final pulse length was rela- 

tively long, approximately 400 fs. Petawatt pulses were accomplished by using a section of 

one of the amplifier beam lines of the NOVA laser to generate over 600 J of energy in the 

amplified pulse. To avoid the use of large scale amplifiers to achieve 100 TW class pulses, 

efforts can be made to significantly decrease the final pulse duration and achieve the same 

peak powers with a fraction of the energy. The latter is the approach chosen for the laser 

considered here. The final goal will be produce pulses with peak powers of close to 100 

TW with final pulse energies of approximately 5 J, thereby necessitating pulse lengths 

of 50 fs or less. Energies of this level can be achieved with a room-sized laser system. 

The laser system uses titanium-doped sapphire as the gain medium with several amplifier 

stages located in between a pulse stretcher and a pulse compressor. Both the amplifiers 

and the CPA stretcher/compressor have exacting design constraints for amplification of 

short pulses (sub-100 fs) and will be discussed separately: the overall laser system and 

amplification process in this chapter and the pulse stretcher/compressor in Chapter 3. 

There are several aspects of amplification of a sub-50 fs laser pulse which are unique 

to CPA lasers which had to be taken into consideration in the design of this laser system. 

These include the nonlinear phase (the B-integral) acquired by the pulse as it traverses 

the laser system, additional chirp added to the pulse by group-velocity dispersion (GVD) 

and self-phase modulation, and most importantly, the spectral bandwidth supported by 

the entire system. All of these have an effect on the final pulse shape and duration. 

It is essential to carefully control the phase effects produced by all of the elements of 



the laser system. This includes the nonlinear phase introduced by the intensity-dependent 

refractive index ntotal = n+yI. As discussed by Perry et uZ.,~’ it is important to keep this 

at a minimum to avoid significant temporal pulse distortion upon recompression. The 

standard measure of the accumulated nonlinear phase over a length L is known as the 

B-integral, defined as 
L 

J+ 
s 

yIdz. (24 
0 

The total B summed over all components of the system should be less than E+ 1 in order 

to achieve Fourier transform limited pulses. 

In addition to the effects of the nonlinear refractive index, the frequency dependence of 

the linear refractive index of the material traversed by the pulse also becomes significant. 

This frequency dispersion means that each frequency component of the pulse will be 

delayed by a slightly different amount as the pulse travels through the material, affecting 

the phase of the pulse in a frequency-dependent manner. Also, as will be discussed in 

Chapter 3, even the chirp imposed by material dispersion means that the compressor will 

need to be adjusted to compensate. This results in the compressor no longer identically 

matching the stretcher, meaning that there will be some chirp imposed by the stretcher 

and material that cannot be perfectly removed in the compressor. Because of this, some 

groups choose to design their system to minimize the amount of material through which 

the pulse propagates. Otherwise, the stretcher/compressor must be designed to account 

for this effect. 

Spectral bandwidth is critically important in CPA lasers because femtosecond pulses 

have relative bandwidths on the order of a few percent. This is due to the fact that 

the uncertainty principle requires that the time-bandwidth product AvAt be larger than 

approximately .5; the actual value depends on the actual pulse shape and the definition 



used for At and Au. For example, if one defines the widths in terms of the FWHM values, 

then for a gaussian temporal pulse shape (I(t) = 10exp(4ln2(t/At)~)), AvAt = .441 

while for sech2 pulses (I(t) = I ssech2(1.76t/At)), AuAt = .315. In terms of wavelength, 

At(f = 1.47X; for gaussian pulses and 1.05X: for sech2 pulses where X0 is the 

center wavelength of the pulse in microns. For a pulse whose spectrum is centered at 

820 nm, AtAx = .99 and .71, respectively. Thus even for a gaussian pulse of 50 fs 

FWHM, the associated spectral bandwidth will be 20 nm, and for a 20 fs pulse, the 

associated bandwidth will be 50 nm. These large bandwidths must be maintained as much 

as possible throughout the system since a narrowing of the spectrum directly corresponds 

to longer pulses at the end of the system. Effects that will narrow the spectrum include 

the finite gain bandwidth of the amplifying medium, the frequency-dependent reflectivity 

of dielectric mirrors and polarizers, and finite size of the optics in the pulse stretcher and 

compressor. 

The bandwidth requirements limit the possible gain medium to very few materi- 

als, most notably titanium-doped sapphire (Ti:sapphire) and chromium-doped LiSrAlFs 

(LISAF), whose stimulated emission cross section cre are spectrally broad. Many CPA 

lasers have been built in recent years using both materials42-45~35~46 with the majority 

using Ti:sapphire. There are positive and negative aspects of both materials: LISAF 

has a large saturation fluence and a much longer upperstate lifetime enabling flashlamp 

pumping of the medium while Ti:sapphire has a much higher gain, a broader gain spec- 

tral profile, and much higher thermal diffusivity. Ti:sapphire is also typically available 

in crystals of higher optical quality than LISAF. The bandwidth supported is, however, 

the most critical aspect for amplification of 50 fs laser pulses. The pulse spectrum will 

be significantly narrowed for the enormous gain (- 10’) required in CPA lasers, even for 
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Figure 2.1: The normalized stimulated emission cross section or of Ti:sapphire”’ (solid 
lime). The dotted and dashed lines are the resulting spectra after amplifying a flat spectrum 
by a total gain of 107 and 10”. respect.ively. 

Ti:sapphin:. fbr which m,(X) is 215 ml (FWHM. Fig. 2. I). Also shown in Fig. 2.1 is the 

final amplified spectra of an input pnlne wit,11 a flat spectrum (I(w) = 10) after a total 

gain of 10’ or 10’. These output spectra are only 50 mu wide, indicating that even an 

infinitely short pulse will be hrosdencd to 20 fs upon amplification. For a 66 nm wide 

gaussian pulse (I5 fs), it will he narrowed t,o 31 urn (25 fs), and a 33 nm wide gaussian 

pulse (30 fs) will he narrowed to 28 ml (35 fs). LEAF. whose cross section spectral dis- 

t,rihutim is about half as wide. will he even wwsc and cannot be used for the high gain 

amplifiers with 50 fs pulses. Once the cntqq has been arrrplified t,o t,he millijoule level, the 

spectral gain narrowing will be less important. but, LEAF amplifiers of the size needed 

at this stage typically cannot he fired more t,han every few seconds while Tiapphire can 



11 

be fired at tens of Hertz. Therefore, Ti:sapphire was chosen as the gain medium for our 

entire system. 

However, the choice of Ti:sapphire, because of its short upperstate lifetime, requires 

that all of the amplifiers be pumped by the output of another laser systems. Since the peak 

of the absorption cross section of Ti:sapphire is approximately 500 nm47, it is common to 

use the second harmonic of a Nd-doped laser medium such as YAG or glass. However, in 

order to both take advantage of large aperture Nd:phosphate rods which were available and 

simultaneously allow for higher repetition rates than is possible for glass at low energies, we 

selected Nd:YLF as the laser medium for part of the pump laser system. Fig. 2.2 shows a 

schematic block diagram of the various components of both Ti:sapphire and Nd:YLF/glass 

laser systems. 

The limiting factor throughout the total system for both final pulse energies and the 

pulse repetition rates is that of the pump source. Small aperture YLF rods (less than 10 

mm diameter) can be fired at 10 Hz and produce energies of around 1 J; therefore the 

laser system up to this level will operate at 10 Hz and produce pulse energies of about 200 

mJ at 820 nm. The larger aperture 19 mm YLF rods can only be fired about once per 

second and so the next stage will operate at 1 Hz producing approximately 1.5 J at 820 

nm. Finally, the glass based amplifiers can only be fired every 7 minutes requiring that 

the final, high energy stage be operated on a single shot basis producing E 7 J of 820 nm 

light. 

The details of the design and modeling of the Ti:sapphire amplifier chain are presented 

in Section 2.1 as well as the performance characteristics of the parts now completed. The 

performance characteristics of the Nd:YLF pump system are given in Section 2.2. 
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2.1.1 Master Oscillator and Stretcher 
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Figure 2.4: 30 fs Kerr-lens modelocked Ti:sapphire oscillator. Ti:sapphire crystal (1 cm 
long) is plwed 5 cm from each curved mirror. 

circuitry of the pump laser. it was also fmmd necessary to ruu the laser at higher than 

optimum pmvers (> 7.5W) which resulted in a propemit,y for CW cavity modes to also 

lax. It. was found empirically t,ha,l. imert,ing a vertiml slit between thr t,wo lxisms in t.he 

dispersion coruprnsa,l,io~~ arm of the cavity allowed for (, he i~~btoduction of enough loss tu 

discriminat,e against the CW modes and improved t,he stability of cavity operation. It also 

provided for a simple method of t,uning the central frequenry of the modelocked spectrum 

approxirnatc:ly 20 nnl in eil.het. direction without fnrther cavity adj ust~mmt.. 



fact that the polarizers are the single most critical element in the system in regards to 

bandwidth limitation. The polarizers used were a broadband, thin-film design from Laser 

Power Optics. Notwithstanding the designation of broadband, when used in transmission, 

it was observed that a nominally 32 nm (FWHM) pulse was narrowed to 24 nm by passing 

through 4 polarizers. Each polarizer used in transmission had the effect of narrowing the 

pulse spectrum by approximately 7%. The bandwidth passed by each polarizer is also 

very sensitive to the angle of incidence of the beam striking the polarizer with the shorter 

wavelengths being affected most by the angle of incidence being too shallow. 

The solution to this is to use the polarizers in reflection whenever possible (this is 

evidenced in the design of the regenerative amplifier which follows). Double polarizers 

were used in reflection on either side of the Pockels cell and negligible spectral narrowing 

was observed. This arrangement also provides an improved extinction ratio compared to 

single polarizers used in transmission. 

2.1.2 Broadband Regenerative Amplifier 

For the first amplifier stage of the system, it is necessary to achieve total gains on the 

order of l-10 million for output energies in the millijoule range. The initial amplifier 

design for this stage was to pass through the gain medium eight times using a bank of 

eight 1.2 cm diameter mirrors in a circular pattern on either side of the Ti:sapphire crystal. 

The advantage of this is that the only material traversed is the gain medium, minimizing 

material dispersion. The mirrors were used at near normal incidence to maximize the 

spectral width of their reflectivity curve. This design produced pulses of about 1 mJ, 

but because the beams were not collinear, the pump beam needed to be larger than 2.0 

mm in diameter (l/e2 point). In addition, it was necessary to use high pump fluences in 



Figure 2.5: I3roadhand regenerative amplifier design. TFP indicates thin film polarizer, 
and PC indicates Pockels cell. The flat mirror showrl is used as a fold mirror for compact- 
ness. The pulse is injected off the face of the Ti:sapphire crystal. The folded leg has a 
total length of 50 cm from the polarizer t,o the end mirror. 

order to achieve a t.ol.al gain of 1 million in just 8 passes through the gain medium. This 

necessitat,ed using 101) m.J of pump energy in order to get 1 mJ out. The final drawback 

of using this design is that the shot-t,o-shot, energy stability is relatively poor with an rms 

deviation of 10% 

To improve the shot-to-shot, st,ahility of t,he laser as well as reduce the pump energy 

required to obtain 1 mJ of output energy. the multipass amplifier was replaced by a 

regenemt,ive amplifier design. Outside of the increased material dispersion that will he 

incurred. a regenerative amplifier requires the use of polarizers in conjunct,ion with a 

Pockels cell in order t,o switch-in and switch-out the pulse train. Any element within the 

amplifier cavity will he traversed 20 40 times so its effect will be raised t,o the 20 40th 

power. This precludes the use of any polarizer in transmission. It is still necessary to limit 

the amount of material through which t,he heam passes. Fig. 2.5 shows a linear cavity 

design that meets these criteria composed of the end mirrors, the Ti:sapphire crystal, 

a Pock& cell, and a polarizer used in reflection. The right half of t,he cavit,y must, be 

polarized parallel to the page (P polarization) trr pass t,hrough t,he Brewster face of t,he 

Ti:sapphire crystal: and 1.1~ left half of the cavity must he polarized perpendicular to 

the page (S polarization) to 1~ reflected off the polarizer. The beam is injected off the 
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brewster face of the Ti:sapphire crystal vertically polarized (S polarization) and reflects 

off the polarizer to the curved end mirror. While the pulse is in this half of the cavity, 

the Pockels cell is turned on to half-wave voltage, thereby rotating the polarization state 

to P in the right half of the cavity, passing through the Brewster face of the crystal. The 

Pockels cell is maintained at half-wave voltage until the pulse is to be switched out of the 

cavity. It is then turned off while the pulse is in the right half, remains P polarized, and 

is transmitted through the polarizer out of the cavity. 

In order to model the cavity shown in Fig. 2.5, it is important to realize that the 

transverse spatial gain profile is not flat since we chose to use the frequency-doubled, 

nearly gaussian output of a Nd:YAG laser. Stuart et aL4’ give a formalism for treating 

this case by approximating the near gaussian gain profile as a quadratic radial dependence 

as described by Siegman50. 

First, the excited state population is calculated based on the absorption of the incident 

pump beam. The expression for the pump beam fluence Pp(r, Z) as it is absorbed while 

propagating through the medium is 

rp(r, 2) = ra In [l + e-NoCaa(erp(r)lra - l)] . (2.2) 

In this equation, iV0 is the initial ground state population density (5 x 10lg cme3 for .15% 

doped Ti:sapphire), Pa = hi/ o, is the absorption saturation fluence, CJ, is the absorption 

cross section (5 x 10-20cm2 at 532 nm), and Pp(T) is the initial radially-dependent pump 

fluence. The ground state population density after absorption is then given by 

Ng(f, z) = IVoe --rP(T,Z)lra 7 

and, assuming 100% of the excited population is in the Ti3+ state, the excited state 



population density (and thus the inversion) becomes 

N(r, z) = No - N&-,.2) 

= No (1 - exp(-rp(5 4/r,)). (24 

Assuming a gaussian profile for the pump fluence, rP(r) = ro exp(-2r2/wz) where wp is 

the waist (1/e2) of the pulse , the radial dependence of the population inversion at z = 0 

is 

N(7-, 0) = No (1 - exp(-r. exp(-7-2/w~)/r,)) 

In the limit that the absorption is not saturated, i.e. I?, < ra, this becomes 

(2.5) 

(2.6) 

showing that the inversion also has a gaussian transverse profile as is expected. 

The output fluence rout (r) is related to a radially varying input fluence I’in(r) and 

the longitudinally averaged population inversion 

N(r) = ; IL N(r, z) dz P-7) 
0 

rout(T) = re ln [l + exp(N(r)a,l)(exp(ri,(r)/r,) - I)] (2.8) 

where 1 is the length of the gain region in question, re = hula, is the stimulated emission 

saturation fluence, and (T, is the stimulated emission cross section (e.g. for 820 nm, this is 

2.7 x 10-l’ cm2)). However, as will be seen later, the peaked transverse gain profile causes 

the center of the pulse to be amplified more than the wings, spatially, thereby effectively 

reducing the diameter of the pulse as it is amplified (gain guiding). For this reason, it will 

be best to break up the Ti:sapphire crystal into several smaller sections in z over which 

the beam waist can be assumed to be constant. 



The average population inversion Nj over the jth segment from .zj to zj+r is obtained 

by substituting Eq. (2.2) into Eq. (2.4) and averaging over the segment 

nr,=L zj+1 
s [ 

1 

AZ Zj l- 1 + exp(-NOa,z)(exp(rp(T)/r,) - 1) 1 dz (2.9) 
= No + $&ln 

ewNOuazj + ,rP(r)lra _ 1 

a e 
I 

-NO~aZj+l +,r,(r)/r, _ 1 . 
(2.10) 

where AZ = zj+l - zj. For subsequent passes, the remaining inversion after amplification 

is, in analogy with Eq. (2.3), given by 

(2.11) 

where the factor exp(-t/rSe) has been inserted to account for population loss due to spon- 

taneous emission with rse being the upperstate lifetime of Ti:sapphire. This decoupling 

of spontaneous emission from the amplification is possible because the amplification takes 

place in times of the order of 100 ps while the lifetime of Ti:sapphire is approximately 2 

ps. However, the multiple passes in the regenerative amplifier occur over several hundred 

nanoseconds since the initial excitation by the pump. Thus, the energy loss to spontaneous 

emission must be accounted for as the pulse builds up in the cavity. 

If each segment j is assumed to be small enough such that the population inversion can 

be taken as constant over the segment (i.e. NJn)(r, z) = $T’(T)), the average population 

density in the segment for the next pass is given by 

@n+l) 
s 

zfAz 
e -wwe dz, (2.12) 

Z 

and integrating, 

e-Xp%,Z + erin(r)/re - 1 

e -Nj(n)~e(z+Az) + eri,(T)p, _ 1 I * 
(2.13) 

Now, in order to convert this 2-d problem in r and x to a l-d problem in z only, it is 

possible to approximate the gaussian-like radial dependence as a quadratic dependence so 



that F(r) N- iVe(l -2r2/$). Th is p ermits the use of the gaussian duct formalism5’ which 

also allows for a quadratic transverse dependence of the intensity-dependent refractive 

index. The refractive index is then n N no + r10(1 - 2r2/w2), and the propagation over a 

length AZ is governed by the complex ABCD matrix 

cos rjz &j sin 7.z 

-norj sin qz cos r&z 

where the complex parameter q is given by 

4~1~ go x 1 112 
rl= -++i 

now2 nAznaw;4 * 

(2.14) 

(2.15) 

The additional factors of no in the denominators in Eq. (2.15) take into account the 

differing sagittal and meridional beam waists inside the gain medium due to the Brew- 

ster faces. Thus, by using Eq. (2.14) for propagation inside the Ti:sapphire crystal and 

standard ABCD matrices elsewhere where the complex beam parameter q is 

,+4 = A&l) + B 
c&l) + ,, > 

and the beam waist obtained from q as 

x 
w2 = -rIm{l/q} ’ 

(2.16) 

(2.17) 

the dynamic mode behavior can be calculated throughout the cavity. 

Using this procedure, several cavity configurations were modeled in an attempt to 

determine the optimal cavity design. The results of these are presented in Table 2.1 for 

two different values of end mirror radii of curvature, 2 m and 4 m. In all cases, both 

end mirrors are of the same curvature with the crystal being placed at the center. The 

cavity length was 2 m for all cases except the last line of Table 2.1 for which it was 4 m. 

The choice of using 2 m mirrors gives a shorter buildup time and lower required pump 



Table 2.1: Results of cavity calculations for several design parameters. The fluences are 
given in J/cm 2. The cavity round trip time is 13.5 ns in all cases except the last line where 
it was 26.4 ns. Gr is the single pass gain for the first pass and Toout is the time that the 
pulse is in cavity. 

R mirror (m) fp (mJ) 220, (mm) Pp Gr Ema, Npms rout (ns) Ipeak B 
2 20 1.2 3.5 4.5 5.7 16 110 1.2 .34 
2 20 1.4 2.6 3.0 3.4 22 150 .64 .26 
2 20 1.6 2.0 2.3 1.6 32 215 .28 .23 
2 22 1.5 2.5 2.8 2.9 24 161 .48 .26 

4 30 1.8 1 2.4 1 2.7 ( 1.4 1 32 429 .lO 1 .13 ] 

energy, but the trade-off is that lower output energies are achieved. It is also important 

to note that although shorter buildup times can be achieved by decreasing the cavity size, 

there needs to be sufficient delay between passes to turn on the Pockels cell. It is also 

important to place the Pockels cell as far away from the beam waist as possible to decrease 

the B-integral accumulated during amplification, but not close enough to an end mirror 

to experience counter-propagating beams within the cell. 

The final cavity design was a confocal cavity with 2 m mirrors separated by 2 m, the 

Ti:sapphire crystal was 1 m from either mirror, the Pockels cell was located 40 cm from 

the crystal, and the polarizer was located 10 cm beyond that (50 cm from the end mirror). 

For space considerations, the “S” side of the cavity was folded by using a 34” mirror as 
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Figure 2.6: Calculated waist of mode in regenerative amplifier. Cavity length is approxi- 
mately 200 cm. 

shown in Fig. 2.5. The evolution of the cavity mode as calculated using the formalism 

described above is shown in Fig. 2.6 which shows the size of the beam waist as a function 

of propagation distance. Although the input mode does not match the cavity mode well, 

the beam quickly assumes the cavity mode profile within 2-3 round trips. The energy 

buildup of the regenerative amplifier is shown in Fig. 2.7 where each of the peaks is the 

pulse energy measured by detecting the leak-through of the cavity end mirror with a fast 

photodiode (ET-2000) calibrated to the energy measured by a pyroelectric energy detector. 

The pump beam was measured to be 22 mJ with an nominally gaussian spatial profile 

of 1.5 mm diameter at the l/e2 point. As shown in Table 2.1, higher pump energies will 

give higher output energies, but at the expense of larger value of B and higher intracavity 

fluences. The increase in output energy, however, would increase the output energy of the 
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Figure 2.7: Regenerative amplifier buildup. The peaks are the energy buildup in the 
cavity, and the envelope is t,hat calculated using the model described in the text. (shift,ed 
60 IIS later1. 

next amplifier stage only by a small amount,. It was decided, therefore, to limit the output 

energy to approximately 3 mJ. 

The energy buildup was calculated using these pump beam parameters and assuming 

.l nJ input with 4% loss per pass due to absorption in the tryst@ and losses OIL the 

polarizer. The result is shown as the gray line in Fig. 2.7 which gives good agreement in 

maximmn energy and qualitative shape wit,h the measured buildup. However. the actual 

buildup peaks 60 IIS lat,er than that calculated and decays faster- t,han calculated. The 

reasons for this discrepancy are most likely due t,o the fact that the model assumes a 

gain volume of infinite transverse ext,ent. with a quadratic radial dependence. This is 

really only valid if the mode size is much less than the pump (and therefore 11115 gain) 
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Figure 2.8: Energy stability of the regenerative amplifier over 1000 shots 

diameter. Fig. 2.6 shows that for this configuration, the cavity mode is l-l.1 mm in 

diameter at the crystal relative to a pump diameter of 1.5 mm and so the accuracy of the 

quadratic approximation is limited. For the first few passes through the gain medium, 

the beam waist is larger than the pump diameter, and so much of the energy of the pulse 

misses the gain volume and is lost. This is not accounted for in the model. Also, as the 

gain is depleted, the cavity mode begins to change radically, becoming collimated in one 

propagation direction and focused in the other. This leads to an increased beam waist 

throughout the cavity so that energy will be lost more rapidly on limiting cavity elements. 

The output performance of the regenerative amplifier is shown in Fig. 2.8 where the 

energy of 1000 consecutive shots were recorded with a pyroelectric detector. The average 

energy output is 2.9 mJ with a standard deviation of .06 mJ (2%). Fig. 2.9 shows the 

TEMoo spatial profile of the output of the regenerative amplifier. The spectral effects 
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Figure 2.11: Transmission spectrum for P polarization of thin-film polarizer used in re- 
generative amplifier.51 

of the amplification is shown in Fig. 2.10 where the input spectrum (solid line) and the 

output spectrum (dotted line) are shown. Also shown is the output spectrum that would be 

expected simply due to the finite gain spectral profile (see Fig. 2.1) and a gain of 30 m illion 

(.l nJ to 3 mJ) as was discussed at the beginning of this Chapter. The output spectrum 

is slightly narrower than that expected due solely to gain narrowing. This most likely is 

due to the poorer transmission of the blue end of the spectrum by the polarizer when it 

is switched out (see Fig. 2.11). The spectrum is severely pulled toward the blue, but it is 

not significantly distorted since the regenerative amplifier is not heavily saturated.52v53 

2.1.3 4-Pass Power Amplifier 

The next stage in the amplifier chain is a geometrically multiplexed /l-pass amplifier 

pumped by the remainder of the second harmonic output of the Spectra Physics Nd:YAG 
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Figure 2.13: The calculated (line) and measured waist (dots) in the first amplifier. 

The output of this amplifier stage, when pumped by 180 mJ of green light with a spot 

size of 2.8 mm, produces an average energy of 40 mJ with a standard deviation of 1 mJ 

(2.5%). Of interest is the fact that the finite lifetime 7s~ of Ti:sapphire has a significant 

effect on this amplifier because the pump beam arrives S 300 ns before the beam does 

(the same laser pumps both regenerative amplifier and this stage). Although the lifetime 

of Ti:sapphire is 2.3 pus, calculations show that with no delay, this amplifier should output 

50 mJ of energy, but with the 300 ns delay before the first pass, the calculated energy 

output is only 40 mJ-a loss of 20% in energy output. 
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Figure 2.14: The spatial profile of the 820 nm heam 90 cm aft.et. each pass through the 
amplifier. (a) is the free propagating rrmde (no pump light) and (1)) (e) are passes 1 4 
respectively. 

2.1.4 Second 4-pass power amplifier 

The first four-pass amplifier stage provides 40 mJ in a gaussian spatial mode. For r~~re 

efficient extraction of the energy in fixture amplifiers. the spatial profile of the beam is 

converted into a fiattop tramwme spatial profile to Alow a greater uverlap between puny 

and seed modes without the gain guiding that has Izen discusswl so far. This COIIV~~SIOII 

is acco~r~~~lished by truucsting the gaussian spat,ial profile using a serrated aperture so 

that only the relatively flat peak of t,lle gmssim remains. The energy lwel nt which the 

clipping oix:u~s is ilel.ern~inetl by a trade-off between the energy loss l.ha,l. Is accPpt,al)le 

and the uniformity that is desired. ‘The closer to the peak th? beam is clipped. t,he flatt,er 
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distance (mm) 

Figure 2.15: The beam as it appears at the image plane (approximately 2/3 of the way 
through the second amplifier stage. 

the beam profile, hut the lower the total energy that, will be transmitted. Allowing the 

beam to free propagate for 1.5 III after the first amplifier stage gives a beam waist. of 1.8 

mm which, for a 2.0 mm diameter aperture, passes 50% of the energy. The high spabial 

frequencies from the serrates are then removed by sending the beam through a vacuum 

spat.ial filter,“” which also serves to e!xpa~~d the lresm to 4 mm for the next amplifier. The 

beam at the image plane of t.he telescope is shown in Fig. 2.15. 

Once t,he beam is clipped, diffraction effects will quickly distort the spatial profile 

This can he overcome by using telescopes to relay the image of the aperture to the next 

amplification stage. III most relay-image systems, the length of the amplifier is com- 

paratively short, and so the system design is mostly determined by optics concerns. e.g 

aberrations. However, since each amplification stage in t,his laser system is multipassed. 

the effective total amplifier length will reach several meters, e.g. the distance traveled in 

the first stage is approximat,ely 8 m. Fig. 2.16 shows the beam profile only 1.6 m in front 
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Figure 2.16: The spatial profile of the beam shown in Fig. 2.15 1.6 m in front of focal 
plane. 

output 

iW+!$!$- ,d--=+i 

Figure 2.17: Schematic of the second amplifier stage. The beam is injected using the 
Pockels cell and exits reflecting off of the polarizer. The total path length is 3.2 III. 

of the focal plane; it is already exhibiting large modIIlat,ioIIs 

For this reason. it was critical to design the second aInplifier stage to be as physically 

coIIIpact as possible while still maintaining sIIIal1 a.ng1e.s bet,ween the beam paths of the 

various passes to minimize distortions canse d by the Imncollinearit~y of the pump and seed 

beams. The solution (Fig. 2.17) was to use a simple double-pass bowtie design so that the 

mirrors could he pushed as close as possible towards the crystal (40 cm on either side). 

The beam is then retro-reflected bark on it,self by a 0” fla,t mirror to make a third and 

fourth pass. A Pock& cell slicer placed at the input, of the amplifier differentiates between 

the input and output beams via polarization. For this configuration. them. Fig. 2.16 is the 

beam profile during its first pass through the Ti:sapphire crystal. 



Table 2.2: Output energies for the second amplifier stage. Fluences are in J/cm2. 

&in (mJ) ) ‘hi, (mm) ) I, (mJ) ) 2wp (mm) ) rp ) &ut (mJ> ) rpeak B 
10 4 I 600 I 4.5 1 3.8 1 240 I 1.1 .15 
10 4 600 5 3.1 170 .8 .lO 
10 4.5 600 5 3.1 200 .7 .09 
10 4 500 4.5 3.1 180 .8 .ll 
10 4 500 5 2.6 120 .6 .08 
10 4.5 500 5 2.6 140 .5 .06 
15 4 550 4.5 3.5 1 230 1.0 ] .15 
15 4.4 500 4.8 2.8 1 190 .7 I .lO 
15 4.4 550 4.8 3.0 220 .8 .ll 
15 4.4 600 4.8 3.3 250 .9 .I3 

I I I 

20 4 1 600 1 4.5 1 3.8 1 270 I 1.2 I .20 I I I I I I I 

20 4 / 600 1 5 I 3.1 I 203 I .9 I.151 
20 4.5 ii0 5 3.1 240 .9 .13 
20 4 500 4.5 3.1 210 1.0 .15 
20 4 500 5 2.6 160 .7 .ll 

I I I I 1 I I 

20 4.5 1 500 1 5 1 2.6 1 190 ( .7 1 .lO 
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This amplifier stage can be modeled with a simple plane-wave model where the gain 

is assumed to be transversely uniform as is the beam itself. Table 2.2 gives a range of 

calculated output energies for several input parameters. The pump energy is provided 

by the doubled output of one arm of the Nd:YLF laser system that provides the pump 

light for the remainder of the laser system. There is approximately 550 mJ of green light 

available. When pumped with approximately 500 mJ, the measured output energy was 

160 mJ with an input of 10 mJ 

2.1.5 Final two Ti:sapphire amplifier stages 

This process will be repeated again for the final two amplifier stages. However, since the 

beam will be larger in diameter, a larger distance can be traveled before the same F’resnel 

number Nf = w2/XL is reached. The third amplifier stage will use a 20 mm x 25mm rod 

pumped with 2.5 J of green light on both sides at 1 Hz. Similar calculations as described 

in the previous section give that an input of 200 mJ will be amplified to 1.6-2 J in three 
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passes. This will be injected into a 30 mm diarnet,er disk pumped with 24 J of green 

light on a single shot basis (every 7 minutes). With 1.6 J input energy. the output energy 

should be 9-12 J, but heavily saturated. Lower pump energies could be used if spectral 

effects due to the saturation of the gain should prove to he a problem. 

2.2 Hybrid Nd-doped YLF and glass pump system 

Figure 2.18: Schematic of the YLF-hazed pump system. 

As has been mentioned before, t,he short upperst,at,e lifelbime of Ti:sapphire requires that 

the population inversion must be established in a very short time. This energy deposition 

rate can only achieved via laser pumping of the gain medium. As stated previously. the 

regenerative amplifier stage and the first power amplifier stage in this system are pumped 

with 300 mJ total of 532 nm light from a Nd:YAG laser. As seen in Sections 2.1.3 and 
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be fired at high repetition rates (usually less than once per second even for intermediate- 

sized rods). In order to allow for as high a repetition rate as possible (10 Hz) and yet 

still allow the use of the large aperture glass amplifiers, Nd:YLF was chosen as the gain 

medium for the remainder of the pump system since it exhibits a laser transition is at 1053 

nm. Since YLF is crystalline, its thermal diffusivity is much higher than that of glass, 

and can be run at higher repetition rates. It also exhibits much less thermal lensing and 

thermal birefringence (it is naturally birefringent) than Nd:YAG. 

As shown in Fig. 2.18, the master oscillator is a unidirectional ring cavity which 

produces 8 mJ per pulse with approximately 1% rms stability.5” The pulse is expanded and 

clipped by a serrated aperture as described previously except that here the clipping point 

is determined so that the curvature on the beam will compensate the inverse dependence 

on radius of the gain profile in the flashlamp-pumped amplifier heads. Fig. 2.19 shows this 

radial gain profile for the 9.5mm aperture amplifier as well as the calculated profile of the 

clipped beam needed to produce a flattop profile upon amplification. The calculation is 

simply done by approximating both profiles by a quadratic form and solving the system 

of equations to eliminate the second order term. 

The energy is then amplified to 50 mJ in a 4 mm x 68 mm (gain length = 50 mm) rod 

pre-amplifier so that it can be split into 2 legs; each with a 9.5 mm x 115 mm (gain length 

= 100 mm) rod amplifier which is double-passed. Between each amplifier stage, there is a 

telescope to increase the mode size to best fill the gain volume in the next amplifier. There 

are two legs so that one can be doubled to pump the second amplifier stage (Section 2.1.4) 

while the other leg serves as the seed for the rest of the amplifier chain. The output of 

these 9 mm amplifier heads shows the main disadvantage of Nd:YLF as a laser medium. 

The heads begin to show severe saturation even for output energies below .5 J; however, 
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Figure 2.20: The spatial profile of i.he 10 Hz Yrmn amplifier head 

at .5 J, the fluence in the rods is only 1 J/cm” which is still below the satumticm fluence 

of I-e = h/o, = 1.6 J/cm* (0, = 1.2 x U-l9 cm2 for the 1053 nm laser transition5’). 

The main reason behind this is that although Nd:YLF has a very long upperstate lifetime 

(480 ps), its lowerstate lifetime is also comparatively long at 10 ns.” Since the pulse is 

16 us. population accumulates in the lower laser level. producing a bottlenecking effect, 

making it more difficult to extract the stored meergy. 

The solution to this problem was to make t,he seed energy as large as possible to begin 

saturating by the end of the first pass in order to extract as ~nurh energy as possible 

throughout the length of t,he rod on the second pass. The most critical leg as far as 

achieving maximum energy is the leg that will provide the pump light for the second 

amplifier stage. Therefore 70% of the energy from l.he 4rrm pre-amp was in.ject,ed int.n 

this leg. resulting in 1.1 J out, in a 7.5 mm beam; the other leg produrm 700 1n.J. The 

rms stability of the output of these two amplifiers is approximately 2.5%. and the tophat 
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spatial profile is shown in Fig. 2.20. 

2.2.1 Second harmonic generation of 1053 nm light 

It is critical to be able generate the second harmonic of the 1053 nm light as efficiently as 

possible since the 527 nm photons are the ones which will produce the population inversion 

in the Ti:sapphire amplifiers. The one drawback to accomplishing this is that the pulses 

generated by the ring oscillator are approximately 16 ns long which means that for a 

given fluence, the intensity of the pulse is low. For example, at a fluence level of 5 J/cm2, 

which is fairly high for damage concerns, the peak intensity is only 300 MW/cm2, which 

is relatively low for frequency conversion. It was decided to down-collimate the output 

of the 9 mm amplifier to 4 mm in order to have an intensity of 500 MW/cm2, but this 

gives a fluence of 9 J/cm2and even higher on the final window of the vacuum spatial filter 

used as the relay. Nonetheless, there has been no damage observed after several hours of 

operation, either on the optics or in the doubling crystal. 

The crystal used for frequency conversion is a 12mm x 30mm piece of KD*P from 

Cleveland Crystals cut for Type II doubling. It is mounted in a temperature-controlled 

oven set at 30°C to avoid any temperature detuning of the phasematching angle from 

heat deposited in the crystal because of the slight absorption in KD*P at 1053 nm. It was 

AR coated with solgel and hermetically sealed with solgel-coated windows to minimize 

deterioration of the crystal due to exposure to moisture in the air. Fig. 2.21 shows the 

output this crystal at 527 as a function of the input energy at 1053 nm. In this graph, 

the line and large squares indicate the output energies calculated for the indicated input 

energies using a computer code that will described later in Section 4.5. The spatial profile 

in Fig. 2.20 was used as the input spatial mode in the calculation, and a temporal pulse 
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Figure 2.22: The spatial profile and line out of the second harmonic beam at t,he 
Ti:sapphire crvstal in amplifier #2. 

2.2.2 High energy amplifiers 

To produce the 5 J of green light, needed to pump the third amplifier stage. approximately 

8-10 J of IR light, will be needed. Doing this with one amplifier stage of reasonable size is 

not likely to he possible so two will be used in parallel. Nd:YLF can be obtained in rods 

with 19 mm apert,ure which can be fired at 1 Hz. Two 19 mm heads were designed with 

19 mm x 120 mm rods giving increase by a factor of four of the gain volume. requiring 

an increase by a factor of four in electrical energy to achieve the same gain. This would 

suggest that these amplifiers should he able to output 4 5 .l each when double passed. 

particularly when they will be seeded by 300 350 m.J each. The beam from the second 9 

mm leg will he split by a W/50 beamsplitter so half of the energy from this leg will go 

into each 19 mm amplifier. The output of these stages will he doubled using two Type I 

KD*P crystals of 4 cm length which is calculated to provide about 60% conversion to 527 

nm. This means that 5 6 .J of meen light should be available to pump the third amplifier 
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stage. 

After passing through the frequency conversion crystals, there will still be 4-5 J of 

IR light in two beams. The final pump amplifiers will be a 19 mm and a 45 mm aperture 

Nd:glass head in series. Since the gain of glass is isotropic in polarization, it is possible to 

recombine the two beams by making them orthogonal polarizations and reflecting one off 

the face of a polarizer while tranmitting the other through the same polarizer. However, 

it is necessary to use Type I SHG in order to preserve the polarizations of the two fun- 

damental beams. The 19 mm amplifier will then be seeded with 4-5 J of energy and will 

be heavily saturated; the stimulated emission cross section for glass is about 4 x 10e2’ 

cm2 so the saturation fluence is about three times that of Nd:YLF. The beam will be 

expanded and further amplified in a 45 mm Nd:glass rod, producing 40 J of light at 1053 

nm. Assuming 60% conversion to 527 nm again, this will give 24 J of green light to pump 

the final amplifier stage. 

2.3 Conclusion 

In this Chapter, the design of a laser system using Ti:sapphire as its gain medium capable 

of reaching energies of up to 10 J has been described. When compressed back down to 

approximately 50 fs, this system will provide peak powers of 100 TW. To date, the system 

has been completed up to the second multipass amplifier stage-this part alone makes 

available 2 TW of peak power at 10 Hz in a reasonably user-friendly system. 



Chapter 3 

All-Reflective Pulse Stretcher for 

Chirped-Pulse Amplification 

As was mentioned in the previous Chapter, the technique of chirped-pulse amplification 

(CPA) has made possible the production of terawatt and now even petawatt class fem- 

tosecond lasers.15 With CPA, high energy, ultrashort pulses are first stretched in time 

by using some type of dispersive delay line. It is then possible to amplify the pulse to 

high energy without damage to the amplifiers. Finally the pulse is recompressed using a 

dispersive delay line of the opposite sign. Devices used for the purposes of stretching the 

pulse include optical fibers (both positive and negative chirp depending on the sign of the 

material dispersion, d2n/aw2), diffraction grating pairs, and prism pairs. 

As the initial pulse durations in CPA systems decrease, the importance of achieving 

a high stretching ratio increases for terawatt class systems. This is due to the need to 

minimize self-phase modulation of the stretched pulse during amplification which will ul- 

timately limit the pulse contrast and the pulse duration achieved upon recompression.40 

Often before this limit is reached, however, the recompressed pulse is limited by aberra- 



Figure 3.1: A schematic representing dispersion using a pair of diffraction gratings sepa- 
rated by a perpendicular distance b. 

tions in 1.1~ stretcher35.“4.5g or: as is well known, by the addition of material dispersion 

which cannot be compensated for in the pulse compressor. In addit,ion to t,hese phase dis- 

tortions: amplitude modulations such as gain narrowingGo and spectral clipping.5g while 

not producing residual chirp. can significantly both degrade contrast and increase the final 

pulse duration. 

The induced chirp is related to first order to the group velocity dispersion (GVD) of 

the device. Most materials possess a positive GVD in the region of 800 nm where most 

Tixapphire syst.ems operate. In contrast, negative dispersion can be provided by either 

a grating pair or a prism pair. As an illustration of this, consider a pair of diffract.ion 

gratings oriented parallel to each ot,her as shown in Fig. 3.1.6’-GZ They are separated by 

a distance b defined as the length of the line segment joining the two gratings normal to 

t.heir faces. The frequency components of a beam incident on one of the grat.ings with an 



angle of incidence Bi are diffracted into angles 8(w) given by the grating equation 

sinO(w) + sin& = y (3.1) 

where m is the diffraction order and d is the line spacing of the grating (e.g. pm). The 

dispersed frequency components then strike the second grating with the angles in the 

reverse order so that they exit the grating pair along a path parallel to that of the input 

but dispersed spatially. The path length p traveled by each frequency component ABC 

or ADE is given by 

AB = b 
cos B(w) 

BC = ABcos(& - B(w)), and so 

p(w) = ABC = b[l + cos(& - O(w))] 
costqw) . (3.2) 

The phase retardation through the grating pair is given byG1 

4b-4 = wJJ)P(4 

WP = -- 
C 

7 tan O(w) (3.3) 

where the last term is due to a 27r phase jump between each grating groove (the factor 

$ tanB(w) gives the number of grooves between the ray position at frequency w and the 

point A’ on the second grating). It is also convenient to expand the phase C#I in a Fourier 

series about the central frequency we as 

(3.4) 

where 

(3.5) 



is the jth derivative of 4 with respect to frequency w. Now the group delay 7 = &$/aw is 

simply the time taken to propagate the distance p(w), i.e. r(w) = p(w)/c where c is the 

speed of light. 

Knowing the path length as a function of frequency enables one to calculate the 

corresponding coefficients @ in the phase expansion because /?r = p/c. Therefore, the rest 

of the expansion coefficients are 

The first two phase terms ,& and pr simply add a constant phase value to all frequency 

components and so are unimportant for our purposes. After the constant and linear terms, 

the second term /?z corresponds to GVD and a linear chirp added to the pulse and is given 

by 

P2 = 
b#(w)(sinBi + sin@(w)) 

ccos2 8(w) . (3.7) 

It turns out that for a grating pair such as has been described, ,0;! < 0, which means that 

the pulse becomes negatively chirped (the higher frequencies lead the lower ones). Finally, 

the higher order terms describe nonlinear chirp which is added to the pulse. These are 

P3 = ccos~e(w) -p2k4 + [sin& + sinQ(w)][2 tan0(w)H2(w) + 0”(w)]} , (3-8) 

P4 = ccos~eo {3[sinB(W)8’3(w) + e’(w)e”(w)] + [sin& + sin8(w)][[2sec2 ecw) 

+ 4 tan2 0(w)]0’3(w) + 6 tan e(w)S’(ti)0”(w) + e”‘(w)]} , (3.9) 

and 

{[ 
5sec8(w) + 7sinB(w) tanQ(w)]0’4(w) + 18sin8(~)8’~(w)B”(w) 

+ 3 cos e(w)eff2(w) + 4 cos e(W)e~(W)e~~~(W) + [sin & + sin e(w)] 
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x [[16 sec2 e(w) t ano + 8 tan3 0(w)]0’4(w) + [12 set” 0(w) + 24 tan2 e(w)] 

xe’2(W)eff(W) +tan8(~)[68”~(~) + se'(~)efl'(~)] +et4)(w)]} (3.10) 

Herein lies one of the difficulties of chirped-pulse amplification: a pulse stretcher adds 

a frequency-dependent phase 4(w) characterized by the coefficients /?j, stretching the pulse 

in time. These terms, then, must be exactly canceled by the pulse compressor in order to 

achieve a transform-limited pulse in time. Failure to do this results in degradation of the 

pulse temporally. As mentioned previously, this is complicated by spectral effects in the 

amplification chain as well as additional phase acquired by the pulse due to dispersion in 

the material traversed in the laser system. The degree to which the final pulse is degraded 

by uncompensated phase terms, as is clear from Eq. (3.4), is determined by the bandwidth 

of the pulse and so the initial and final pulse lengths. For much of the history of CPA 

systems, even the third order phase term was often neglected. However, for sub-100 fs 

pulses, even the fourth order term is important”3T44 and can significantly broaden the final 

pulse. A brief study of the effect of various values for the phase terms flj on the pulse 

length and shape of a nominally 45 fs pulse is presented in Appendix A. In what follows, 

the design and characteristics of a novel, user-friendly pulse stretcher will be given that can 

be used in CPA systems with final pulse durations of less than 50 fs. The two compressor 

designs mentioned in Chapter 2 will also be presented. 

3.1 Pulse Stretcher 

Due to their high dispersion, diffraction gratings have become the most widely used com- 

ponents for stretching and compressing pulses, especially since Martinez64 showed that 

the signs of the phase terms can be inverted by placing a l-to-l telescope in between the 



grating pair. The typical arrangement in a CPA system, then, is a pulse stretcher (or pulse 

expander) producing positive delay, and a compressor producing negative delay. Choosing 

this arrangement allows the use of the more complicated telescope/grating design in the 

front end of the system where the beam size is small and the energy is low. aIn early 

designs, the stretcher was composed of a pair of diffraction gratings separated by a l-to-l 

telescope. 64,65 Due to the fact that this design was highly sensitive to grating alignment, 

these double grating designs were replaced with a folded design using a single grating and 

lens with a mirror at the Fourier plane. 66 However, the early stretcher designs utilizing 

refractive optics were limited to pulse lengths above approximately 100 fs due to chromatic 

and spherical aberration in the telescope which are associated with the extremely large 

bandwidth required for pulses 5 80fs. 

As a result, several groups35,44,45t5g h ave developed all-reflective stretcher designs. 

These designs either employ large special optics, are limited in the stretching ratio, are 

used off-axis, or involve a large number of elements which complicate alignment. For our 

CPA system, we developed an all-reflective, on-axis design containing only four elements 

which has been used to produce a stretching ratio in excess of 20,000. This pulse stretcher 

was designed specifically for ease of alignment and insensitivity to slight alignment errors. 

It was found that off-axis aberrations affected the fourth order phase term, which could 

be used to compensate for material dispersion in the laser system and to produce sub-50 

fs pulses. 

3.1.1 Stretcher design 

The pulse stretcher design used in this laser system is composed of only four reflective 

elements as shown in Fig. 3.2. The components are a 6 in. diameter gold mirror (flat) at 
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Figure 3.2: (a) All-reflective stretcher design. The flat mirror is located 63 cm from the 
centerline of the grating. (b)The face of 12” grating with a 2” wide horizontal mirror 
stripe 
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the focal plane, a 113 cm focal length, 8 in. diameter parabolic (or spherical) gold mirror, 

a 12 in. diameter grating, and a roof mirror which displaces the beam vertically for a 

second pass through the stretcher. The flat mirror is positioned at the focal plane of the 

curved mirror, thereby forming a mirror image which allows the use of a single grating and 

a single curved optic. The stretcher telescope is formed using a parabolic mirror in order 

to eliminate all on-axis aberrations. The grating itself is a composite where a mirror stripe 

has been placed horizontally across the center of a holographically-produced, 1480 l/mm, 

broadband gold grating67 (see Fig. 3.2(b)). This stripe acts as the fold mirror necessary 

to direct the beam to the flat mirror placed in the focal plane of the curved mirror. 

The input beam strikes the grating slightly above the mirror stripe and is diffracted 

to the parabola. The parabolic mirror reflects the dispersed beam at a slight downward 

angle so that it strikes the mirror stripe in the middle of the grating. The converging 

beam is reflected from the grating plane to the flat mirror at the focus of the paraboloid. 

Reflection from the flat mirror repeats this sequence in reverse order, only on the lower 

half of the optics. The beam exits the stretcher assembly vertically displaced from its 

incident location. At this point, it is sent back for a second pass through the stretcher by 

a roof mirror. 

The presence of the telescopic system in the stretcher design does not allow for analytic 

solutions for the path length p traveled as a function of frequency as was possible for a 

grating pair (Eq. (3.2)). The path length must be determined numerically for a range 

of frequencies to an accuracy that will enable the determination of the fourth derivative. 

Simple ABCD matrices do not adequately model the optical system and so it is necessary 

to do exact raytraces of the system. It was found that the Mathematics package Optica 

provided a useful and robust method of raytracing our stretcher design.68 A set of rays 



of a range of frequencies were traced through the stretcher, giving a set of path lengths 

as a function of frequency. These were then fit with a sixth order polynomial, which was 

differentiated four times within Mathematics to obtain the phase terms /3j. The number of 

frequency components used was 12 separated in wavelength by 5 nm. It was verified that 

increasing this number or decreasing the wavelength spacing did not affect the resultant 

phase terms. Increasing the order of the fit polynomial also had no effect (as long as the 

order was less than the number of data points, of course). The values given by Optica for 

the path lengths were also verified by a FORTRAN routine that would raytrace a specific 

configuration. 

3.1.2 Design considerations 

For an ideal stretcher design with no aberrations, the phase terms pj correspond to those 

calculated for a grating pair with a negative grating separation. The magnitude of this 

effective grating separation is equal to the distance from the grating surface to the focal 

plane of the curved optic. Achieving the large stretching ratios needed for amplification to 

the joule level requires that this distance be made as large as possible. However, another 

significant requirement is that the design support as large a bandwidth as possible. This 

second requirement is favored by using shorter focal length optics, but this, in turn, reduces 

the maximum stretching ratio possible while still maintaining unobstructed beam paths. 

The accumulated B-integral will become the most significant factor in our laser system so 

that the stretching ratio will be the overriding factor. As seen in Chapter 2, the spectral 

bandwidth after amplification will be approximately 20-25 nm FWHM. Using a “rule 

of thumb” similar to that used in optics where the aperture should be three times the 

beam diameter to avoid diffraction effects, we need the stretcher to pass roughly 60 nm of 



Figure 3.3: Temporal shape of stretched pulse measured with a fast photodiode and 
sampling head. FWHM M 600 ps (200 ps per division). 

bandwidth to avoid pulse distortion due to clipping of the outlying parts of the frequency 

spectrum. 

By choosing to use an 8 in. diameter optic with a focal length of 113 cm, it is possible 

to stretch 30 fs (FWHM) pulses from the Ti:sapphire oscillator described in Section 2.1.1 

to 600 ps (a stretching ratio of 20,000) while still passing 60 nm of bandwidth. Fig. 3.3 

shows the stretched pulse as measured using a fast avalanche photodiode. The spectrum 

of the stretched pulse is shown in Fig. 3.4 and is indeed 60 nm between clipping points 

(shown by the arrows), the limiting aperture being the parabolic mirror. It should be 

noted that the 12 in. diameter of the grating is not necessary for the design, but was the 

size of a standard substrate at LLNL and was used strictly for convenience. 
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Figure 3.4: Bandpass of stretcher (60 nm indicated by the arrows). The solid line is the 
spectrum into the stretcher, and the dotted line is the spectrum out of the stretcher. 

The stretcher design itself is not limited to this bandpass, however; other choices of 

optic sizes and focal lengths can be used for different final stretching ratios and band- 

passes. In order to increase the spectral throughput of the stretcher while maintaining the 

stretching ratio, it is possible to simply add two small mirrors at the output to send the 

beam back into the stretcher for a third and fourth pass. For example, the second pass 

output beam height could be changed from 4 cm above the center line to 6 cm with the 

third and fourth passes being at 5 cm and 4 cm, respectively, above the center line. A 

shorter focal length optic can then be used so that the spectrum is less dispersed on the 

optics. In fact, raytracing calculations indicate that a spectral throughput in excess of 

120 nm is possible by reducing the focal length of the curved mirror to about 80 cm. This 

indicates that this design can be used for CPA systems that utilize even shorter pulses 
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Table 3 1 Sensitivity calculations for errors in alignment of stretcher These were all 
done for a parabolic curved mirror and ~9i = 48 19’ centered at 820 mn AZ is the 
horizontal displacement (perpendicular to grating grooves) and Ay is vertical displacement 
of paraboloid center 

Ax (cm) Ay (cm) /3z x (IO6 fs”) P~(xl0’ fs3) fl*(XI07 fs4) Ps(XIO~ fs5) 
00 00 6 909 -1559 6.467 -3 638 
-. 5 00 6.909 -1554 6 441 -3 622 
-. 4 00 6 909 -1.555 6.446 -3 625 

+5 00 6 909 -1 564 6 492 -3 654 
00 +5 6 909 -1559 6 467 -3 638 
00 -5 6 909 -1559 6 467 -3 638 

and greater bandwidth 

3.1.3 Alignment issues 

One of the main advantages of this stretcher design is that is exceptionally simple to align 

The input angle was chosen so that the angle from the grating to the pmabola would be 

the Littrow angle for a HeNe alignment laser This input angle is also just past the edge 

of the large curved mirror, making it as close to Littrow for 820 nm as possible It has 

been shown that operating close to the Littrow angle is advantageous for decreasing the 

sensitivity to misalignment 69 

The alignment procedure is as simple as positioning a beamsplitter between the grating 

and the parabolic mirror such that the HeNe alignment beam is diffracted at lit&row. The 

zero order reflection from the grating is then used to set the position and angle of the 

fiat focal plane mirror. The first-order beam sets the positiofi and angle of the curved 

optic These are the only parameters which need to be adjusted since the fold mirror 



and gratings are all on the same optic. Pulse stretchers are extremely sensitive to any 

relative angle between the gratings which comprise the stretcher (or the fold path in a 

single grating system). Since “both” gratings and the fold mirror are all fabricated as a 

single optic, it is impossible to have any relative misalignment between these components. 

It is, however, difficult to precisely position the center of the paraboloid with certainty 

so raytrace calculations were performed to determine the effect of placement errors on 

the order of 1 cm. These results are shown in Table 3.1 which gives the phase terms 

calculated from raytraces for different horizontal (AZ) and vertical (Ay) parabolic mirror 

displacement from the center. Calculations for errors in angular positioning of a degree 

are of similar magnitude (or lower). The size of the phase change due to these alignment 

errors are negligible, e.g. a phase error of /34 = 2 x lo5 fs4 broadens a 50 fs pulse by 

less then .l fs. By comparison, White et al. 63 show that changes in alignment in their 

stretcher optics by 500 pm produce changes in /34 of up to 4 x lo7 fs4. This indicates that 

although there are apparently no adjustments that can be made for phase compensation, 

this design is very immune to phase errors being caused by misalignment. 

The one parameter that must be set accurately is the placement of the flat mirror 

relative to the focal plane. While phase errors are even smaller than those in Table 3.1 

for similar displacements, errors in position on the order of 1 mm cause a marked increase 

in the spectral divergence of the output beam (spectral divergence refers to different 

frequency components not being collinear). The other parameters that have been discussed 

have little effect on the spatial characteristics of the beam. 



3.1.4 Performance issues 

The phase terms for a grating pair separated by -252 cm (the effective separation of the 

stretcher is -126 cm times two passes) using Eq. (3.2) are 

,f32 = 6.903 x 106fs2 

03 = -1.558 x 107fs3 

/34 = 5.635 x 107fs4, and 

,85 = -2.832 x 108fs5. 

When compared with the terms in Table 3.1 for Ax = Ay = 0, i.e. the stretcher is 

perfectly aligned, the second and third order terms of the phase expansion agree well. 

The difference is due solely to the fact that the rays travel along a vertically slanted 

path through the telescope, thus increasing the effective separation between the gratings. 

When adjusted for this increased distance, the grating pair second and third order terms 

match those in Table 3.1. However, the fourth order term is still only 5.635 x lo7 fs4 vs. 

6.467 x lo7 fs4 for our stretcher design. The fifth order term is similarly much larger than 

would be expected. 

A fourth order residual phase term of this magnitude would broaden a nominally 

50 fs pulse by 20-30 fs upon recompression; this was confirmed using an interferometric 

autocorrelator. Fig. 3.5 shows the autocorrelation trace of the pulse train having been 

stretched and then compressed using a single-grating compressor designed to produce 50 

fs transform-limited pulses. Also shown is the autocorrelation envelope calculated using 

the pulse spectrum combined with the expected residual phase due to the large fourth 

order error. 

The residual phase term is because, as with the aberration-free stretcher described in 
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pulse.  

R e f. 5 9 , th is  des ign  is on ly  truly a b e r r a tio n - f ree if th e  g r a tin g  is in  th e  foca l  p l a n e  o f th e  

pa rabo l i c  m irror.  W h e n  th e  g r a tin g  is n o t in  th e  foca l  p l a n e , th e  d i spe rsed  b e a m  strikes th e  

pa rabo l i c  m ir ror  as  a  d ive rg ing  b e a m , a n d  th u s  o ff-axis. This  i nduces  a  signi f icant spectra l  

d i ve rgence , b o th  hor izonta l  a n d  vert ical, w h e r e  th e  di f ferent  f requency  c o m p o n e n ts a r e  n o  

l o n g e r  co l l inear  a fte r  str ik ing th e  g r a tin g  th e  2 n d  ( a n d  4 th )  tim e . This  behav io r  is s h o w n  

in  Fig. 3 .6 (a )  w h e r e  t ransverse pos i t ion o f 2 0  f requency  c o m p o n e n ts, even ly  s p a c e d  f rom 

7 9 0  n m  to  8 5 0  n m , is d isp layed  u p o n  exi t ing th e  stretcher.  T h e  pos i t ion is p lo t ted b o th  

i m m e d i a tely a fte r  ( 1 0  cm)  str ik ing th e  g r a tin g  fo r  th e  last tim e  a n d  a fte r  a n  a d d i tio n a l  

1 5 0  cm o f p r o p a g a tio n . 
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Figure 3 6, The tlansverse fxequency spread of a lay output from our design using a 
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point (O,O) is where all frequency components would be without aberrations 
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With no aberrations, this Figure should show a single dot at (O,O), meaning that 

all frequency components are coincident spatially (i.e. no spectral divergence). This 

is obviously not the case; the change in the relative positions of the rays as the beam 

propagates show a divergence among the frequency components. There is approximately 

a .6 mrad angular spread across the 60 nm of bandwidth. This spatial chirp and spectral 

divergence, in the plane of grating dispersion in particular, translate directly into changes 

in the phase expansion terms from the ideal, even though the absolute magnitude of these 

is on the order of microns and microradians. 

For comparison, the transverse spatial position of the frequency components is plotted 

in Fig. 3.6(b) for the “aberration-free” design presented by Cheriaux et al. in Ref. 59 (using 

the parameters they give in their paper). It can be seen that this design suffers from the 

same spatial chirp and spectral divergence because the design is only aberration-free on- 

axis. However, the aberrations do not have a very large effect on the phase terms, with 

the largest effect being mostly in the third order term (A& = 1.7 x 104), probably since 

the frequency components are more evenly spaced in Fig. 3.6(b). It should be noted that 

the stretching ratio for the parameters that they give in their paper is only 10,000. The 

effects of aberrations tends to worsen as the stretching ratios increases. 

One possible scenario to remove these aberrations would be to deform the roof mirror 

such that the rays would be redirected back into the stretcher for the second pass along 

precisely the same trajectories, only in the opposite direction. This would exactly undo all 

of the imperfect imaging that occurred in the first pass. What such a mirror shape would 

have to look like is shown in Fig. 3.7 for the stretcher parameters here presented. Only 

doing this correction in the horizontal plane (the plane of diffraction) causes the output 

spatial positions of Fig. 3.6(a) to become as in Fig. 3.8. There is no longer any spatial 
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Figure 3.7: Horizontal cross section of retro mirror needed to remove phase aberrations 
from parabolic stretcher design. 

or spectral aberration in this plane. The phase terms from such a configuration exactly 

match those of a grating pair to fourth order and only differs in fifth order by 5 x lo6 fs5 

(which is insignificant). This shows that the aberrations in the plane of dispersion have 

the most effect on the phase terms, as it to be expected. 

Besides using adaptive optics or curved mirrors to eliminate the phase aberrations, it 

was found via further raytracing calculations that using a spherical surface for the curved 

mirror instead of a parabolic one reduces the error in j34 as well. While this is no longer an 

on-axis aberration-free design, the spherical aberration show up as slightly greater spatial 

chirp, but the frequency components are much more collinear than for the case with the 

designs shown in Fig. 3.6 (see Fig. 3.9). For a stretcher using a spherical mirror of the 

same focal length (113 cm), 04 = 5.482 x lo7 fs4 and ,& = -2.683 x lo8 fs5 (p2 and fi3 

are the same). Not only is the resulting error smaller than the previous design, it is of 

the opposite sign (-1.53 x lo7 fs4 vs. 8.32 x lo7 fs4 for the parabolic mirror). Because of 
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Figure 3.8: The transverse spatial position of the various frequency components (only 
correcting the imaging aberrations in the horizontal plane). 

this, when the material dispersion of the system is added and the compressor is adjusted 

to zero /?2 and 03, AD4 is reduced even further. In fact, the dispersion from traversing 

the amplifiers (88 cm of KD*P and 122 cm of Ti:sapphire) reduces the residual fourth 

order term to -2.6 x lo5 fs4, corresponding to less than 1 fs broadening of a 50 fs pulse. 

Total elimination of the residual fourth order phase term can be accomplished by adding 

more material (equivalent to 10 cm of Ti:sapphire and 8 cm of KD*P) or by changing the 

groove spacing of the compressor to 1450 l/ m m . This simultaneously reduces the residual 

fifth order term to approximately lo5 fs 5. The effects of various amounts of material on 

the residual phase are highlighted in Table 3.2. The resulting phase and temporal delay 

across the pulse spectrum is plotted in Fig. 3.10. 

To check these calculations, we replaced the parabolic m irror in the stretcher with a 

46 cm diameter spherical m irror that was readily available possessing a radius of curvature 



Table 3.2: Table of effects of material dispersion on residual phase using a spherical mirror 
in the stretcher. For the configuration designations, mat1 is including material from regen. 
(40 passes) and amplifiers 1 and 2 and FS2 (see Table 3.3). mat2 all amplifiers and all 
fused silica. (*) indicates changing regen to 44 passes, (t) indicates using a 1448 l/mm 
grating in compressor, ($) indicates using a 1450 l/ mm grating. I and 0, are the grating 
separation and input angle of the compressor that compensate second and third order. 

I Sohere (no mat.) 1 252.2 1 48.2 1 -1.6 I 1.5 I 
Sphere w/ mat. 260.0 
Sphere w/ mat2 260.9 

Sphere w/ mat2* - 
‘&here w/ mat2t - 

49.4 -.26 .35 
49.6 -.13 .23 

- -.018 .13 
- .00015 .058 

Sphere w/ mat2t - - -.016 .076 

Table 3.3: Phase expansion terms for the material dispersion in the various stages of the 
laser system. The regen is assumed to have 40 passes. FS 1 is the 11.2 cm of fused silica 
in lenses and windows to the single grating compressor and FS 2 is the additional 16.4 cm 
of fused silica to the vacuum compressor. Published Sellmeier data for Ti:sapphire (those 
for sapphire7’ were used), fused silica,70, and KD*P7’ were used in these calculations. 
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Figure 3.9: The transverse frequency spread of a ray output from this design using 110 
cm focal length spherical mirror. The dots show the position of the various frquewzy 
components 10 cm in front of the grating while the plus signs (+) show l.he posii.ion 150 
cm further downstrean The point (0;O) 1s where all frequency components would be 
without aberrations. 

of 172 cm. To maintain the same stretching ratio. an additional roof mirror was added. 

and the beam makes four passes through the nt,retcber. With the shorter focal length; the 

bandpass of the stretcher was indeed approximately 9(1 nm with the limiting aperture now 

being the 6” flat mirror. The raytrace for this I-pass configuration gives a smaller fourth 

order phase term (5.3x 10’ fs”) which increases the uncompensated phase. hut, it is st,ill half 

the value predicted for the parabolic mirror design. This is confirmed in Fig. 3.11 where 

the circles are the calcula,ted a,llt,ocorrelat.ion envelope assuming the measured spectral 

width and the calculated residual phase and the line is the measured autocorrelation trace 

of the nnamplil?ed pulse. This trace corresponds t.o a pulse length of approximately 50 fs 

with a small amount of residual chirp 
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Figure 3.11: Interferometric autocorrelation of pulse stretched using spherical mirror. 
Solid circles are the envelope calculated using measured spectral width and predicted 
uncompensated phase. Line is measured autocorrelation trace of compressed pulse. 

These calculations were further tested by obtaining a 9 in. diameter spherical mirror 

with a radius of curvature of 220 cm (110 cm focal length). This was placed in the 

stretcher and the resulting stretched pulse was amplified to 40 mJ through the amplifier 

described in Section 2.1.3. This amplified pulse was then compressed and a single shot 

autocorrelator was used to measure the temporal profile. This is shown in Fig. 3.12(a) 

and has a FWHM of 65 fs, corresponding to a 45 fs pulse in time (see Fig. 3.12(b)). 

The theoretical prediction for the autocorrelation for the given spectrum and predicted 

residual phase is also shown in good agreement. Also shown in Fig. 3.12(b) is the predicted 

temporal profile for gain-narrowed pulse on a log scale (which is 45 fs FWHM). 
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of course rule out using the single grating design shown in Fig. 3.13 so two gratings will 

be used, one of 12 in. diameter and one of 16 in. diameter. As before, the 12 in. size is 

not necessary, but it must be at least 8 in. The final design is then shown in Fig. 3.14 

along with the raytrace for an 8 cm beam. As an added bonus, not using the gold fold 

mirrors increases the maximum energy throughput to approximately 70%. 

3.3 Conclusion 

In conclusion, we have described a novel design for an all-reflective pulse stretcher for use 

in CPA systems. The advantages are that it is easily aligned, relatively insensitive to small 

misalignment, and capable of producing large stretching ratios with a large bandpass. It 

appears that using a spherical mirror will produce smaller uncompensated phase terms 

than the on-axis aberration-free design using a parabolic mirror, and it is calculated to 

be possible to compensate second through fourth order phase terms using a combination 

of material dispersion in the system and/or changing the line spacing of the compressor 

grating. 



Chapter 4 

High intensity nonlinear optics 

The interaction of light with matter is described at the macroscopic level by the electric 

polarization P of the material through the constitutive relation 

D = P + QE. (4-l) 

For much of the history of the field of optics, the dependence of this term on the applied 

electric field has been taken to be linear, i.e. 

P(t) = Es JJ O” #)(t - T) : E(T) dr (4-Z) 
--oo 

or 

P(W) = co#~(w)E(w). (4.3) 

Here, the terms x(‘)(t) and x(l)( w are known as the electric response function and the ) 

electric susceptibility, respectively, and are related via Fourier transforms: 

co p (x, w) = J x(x, t)eiwt dt (4.4) 
--00 

= 2-l [x(x,t)] . 

However, with the advent of the laser and the high electric fields that it can generate, 
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it became possible to drive a material hard enough to reach a regime where the mate- 

rial response was no longer purely linear, thus giving rise to the field of nonlinear optics. 

The nonlinear polarization terms allow for beams of different frequencies to couple with 

each other giving rise to frequencies not originally present. Phenomena such as second 

harmonic generation (SHG), sum and difference frequency mixing (SFG and DFG), para- 

metric amplification (OPA) are ail due to the second order nonlinearity. The third order 

nonlinearity gives rise to stimulated Raman scattering (SRS), stimulated Brillouin scat- 

tering (SBS) , self-phase modulation (SPM), and cross-phase modulation (XPM), among 

others. Until recently, only the second order processes could be used efficiently except 

in cases where a resonant enhancement due to the proximity of an electronic transition 

produces an exceptionally large third order coupling. 

Until very recently, the study of nonlinear optical effects at intensities above a few 

GW/cm2 and above had been limited to tightly-focused beams in gases and liquids. The 

focused beams have been able to create fields large enough to ionize atomic gases and 

excite many high order processes. Nonetheless, this cannot be done in solid materials 

(more than once, anyway) due to material damage. However, it is known empirically 

that the intensity damage threshold of solid material increases as roughly fi where 7 is 

the temporal pulse length. For example, with a 100 fs pulse, it is possible to propagate 

1 TW/cm2 or more through some optical materials. The use of CPA lasers with their 

ability to produce peak powers of terawatts or more in short pulse lengths opens an entire 

new realm of nonlinear interactions of light with solid-state media. 

In this Chapter, the theory of the nonlinear interaction of ultrahigh intensity laser 

pulses will be presented, focusing primarily on third harmonic generation (THG) in a single 

crystal. The effects which must be accounted for are basically due to 1) the high irradiance 
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involved and 2) the short temporal pulse lengths used to create this irradiance. Because 

of the high intensities, all phasematched third-order processes must be included in the 

model. Somewhat surprisingly, unphasematched second-order interactions must also be 

included and can contribute significantly to the overall process. The short temporal pulse 

length, or alternatively, the large associated spectral bandwidth of the pulse, ultimately 

limit the coherence length in the nonlinear medium and thereby the achievable conversion 

efficiency. 

After introducing the notation and terminology which will be used, the set of nonlinear 

wave equations describing the interaction of five distinct waves will be derived. Nonlinear 

optics is notorious for spurious constant factors which can creep in because of a lack of 

standardization of many definitions. Formulas for the effective nonlinear coupling coeffi- 

cients for both second- and third-order processes will be given for all possible polarization 

combinations, including methods for their determination for biaxial crystals. The material 

acceptance bandwidths will be presented and discussed. Finally, the numerical method 

known as the beam propagation method and its implementation will be discussed. 

4.1 Preliminaries 

Nonlinear optics has suffered from a general lack of consistency of several key quantities, 

resulting in changes by factors of two as well as inconsistent signs in derivations presented 

by various authors. I will follow the conventions used by Butcher and Cotter72 throughout. 

The MKS system of units will be used, and absorption effects will be neglected at all levels. 

In this section, most of the important quantities and relations will be derived in order to 

carefully account for all relevant coefficients. 
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4.1.1 Fourier transform pair 
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This definition is used in order to be consistent with the standard representation of the 

rapidly-varying part of the electric field as exp(i(kz - wt)). The Fourier transform of a 

function f will be represented as F‘[f] and the inverse transform will be .7-r[S]. 

4.12 Coordinate systems 

When dealing with the propagation of beams through a crystalline medium, there are two 

coordinate systems that are of significance: the lab system which is defined by the beam 

propagating parallel to the z-axis and the crystal system which is defined by the dielectric 

axes (those which diagonalize the permeability tensor (see, for example, Nye73)). The 

relationship between these two systems is shown in Fig. 4.1 where the beam propagates 

within the crystal at an angle 8, (the phasematching angle) with respect to the crystal 

z-axis and an angle & from the crystal x-axis. The lab x-axis is defined to lie in the plane 

containing zC and k and to be positive going away from z,. The transformation from one 

system (crystal) to another (lab) is governed by the transformation matrix YIJ 

cos0cos4 cos%sin4 -sin8 

T= -sin4 cos 4 0 

sin8cos4 sinesin cos 8 

4.1.3 Derivation of wave equation 

The evolution of electromagnetic radiation is described by Maxwell’s equations: 

dB(x, t> V x E(x,t) = - dt 

V x H(x,t) = aDL’t) + J(G) 

V. D(x, t) = p(x, t), and 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) VB(x,t) = 0. 



Here, E is the electric field, D is the electric displacement vector, H is the magnetic field 

vector, B is the magnetic induction vector, J is the current density vector, and p is the 

free charge density. For the purposes of this work, all interactions will assumed to be 

within a nonmagnetic, dielectric material so that p(x, t) G 0, J(x, t) z 0, and B = psH. 

Taking the curl of Eq. (4.8) and substituting in Eq. (4.9) gives (using ,UO = 1/(c2eo) 

1 a2D(x, t) V x V x EW) = --& dt2 

and then, using Eq. (4.1) and the identity V x V x f = V(V * j) - V2f, 

V2E(x, t) - V(V . E(x, t)) = $ az;$’ t, + & az;;’ t). (4.13) 

(4.12) 

The electric polarization can be represented by an expansion 

P(x,t) = P(‘)(x,t)+P(2)(x,t)+P(3)(x1t) +.a* 

= P(l)(x, t) + PNL(x, t) (4.14) 

where, in perturbation theory, the terms P(j) are proportional to the jth power of the 

electric field. Terms higher than third order will be neglected. Each of the polarization 

terms are related to the applied electric field E(x,t) by higher order material electric 

response functions in a manner similar to Eq. (4.2). The second order polarization is 

given by 

00 co 
P(2) (x, t) = El) ss xc2)(x, t - q, t - TV) : E(x, ~r)E(x, TV) drl dr2 (4.15) 

-cm -co 

and the third order polarization is given by 

P@)(x, t) = xt3)(x, t-q, t--r2, t--7s)iE( x, n)E(x, 72)E(x, 73) dT1 dT2 dT3. 

(4.16) 

73 



These expressions can be simplified greatly if the response of the material to the 

applied field is assumed to be instantaneous as well as uniform throughout the material, 

i.e. 

$)(x1 t1 t .) = #)S(tl) ,*-*, J . . . Wj). (4.17) 

The nonlinear polarizations then become simply 

P(j)(x, t) = co&)E(x, t) . . . E(x, t). (4.18) 

This approximation is equivalent to assuming that there is no dispersion in the electric sus- 

ceptibilities over the pulse spectrum. While this assumption may begin to break down for 

pulses shorter then 50 fs, the nonlinear susceptibilities are generally not known accurately 

enough to begin to account for the dispersion that does exist. With this simplification, 

Eq. (4.13) becomes 

V2E(x, t) - V(V . E(x, t)) 

XI 1 a2(coE(x, t) + P(l)(x, t)) + 1 d2PNL(x, t) or 
C2E0 at2 c2q) at2 

ZZ 1 d2D(l)(x,t) + 1 d2PNL(x, t) 
C2Q at2 C2Eo at2 

where 

D(l)(x, t) = 

is the linear electric displacement. 

~~(7) . E(x, t - r) dr. 

(4.19) 

(4.20) 

It is now convenient to make an assumption concerning the fields themselves. All 

fields E(x, t) will be assumed to be of the form 

E(x, t) = ; [A(x, t)ei(+““t) + ,.,.I (4.21) 

where A(x, t) is a slowly-varying complex amplitude in time and space with center fre- 

quency we and center k-vector LO& (i.e. the wave is propagating in the +z direction). The 



same form is assumed for the linear and nonlinear polarizations as well. The laplacian 

operator on the left-hand side of Eq. (4.19) can be written as 

V2E(x,t) = aZ;$’ ‘) + 0$(x, t) 

+ 2iho aA(x> t> 
dz 

- k02A(x, t) 

+02,A(x, t)] ei(koz-wot) + c.c. 

(4.22) 

(4.23) 

Linear dispersion effects 

Let us now focus on the linear electric displacement D(l) . First, expand the slowly-varying 

electric field amplitude as a Fourier series about a point in time 7: 

A(x,t) = A(x,t’) + 

A(x,t’ - T) = A(x,t’) - a7 
t’ 

(4.24) 

with t becoming t’ - r. When Eq. (4.24) is substituted into Eq. (4.20), the resulting 

expression can be separated into parts Dj such that D(l)(x, t) = Cyzl Dj, according to 

the order of the derivative of A(x, t). These parts then become 

1 ca 
D1 = - 2 

J 
c(x, T) . A(x, t)ei(koz-wo+T)) dv- + C.C. _ 

1 z = - J 2 --co 
E(X, r)eiwoT d7. A(x, t)ei(koz-wot) + C.C. 

= ;e(x,uo) . A(x, t)ei(koz-wot) + c.c., 

D2 = -; Jrn 4x, 4 . Wx, 4 
l -z al- #O-'O(t-~)) &- + ,--. 

;A(x, 7) 
= -- 

2 J 6:(x, r)-reiwoT d7 . ei(kOz-wOt) + c.c. 
-CO ar 

.ld O” = 5dwo -m J E(X, T)c?“~~ d7. aNx7 Tt) 
87 t 

&coz-wot) + c.c. 
.1 a+> = d-e7 t) ei(koz--wot) + c.c., 
“zaw,o’ at 

(4.25) 

(4.26) 



1 a2A(x,r) 
4XJ) . 2 a,3 

T2e~(kOZ-“‘O(~-7-)) &,- + c.c. 

1 O3 = -I E(X, 7)r2eiwo7 dr . 
I%-2 t 

ei(koz-wot) + c c . . 
2.2! --oo 

1 a2 m = -__~ J 2 *2! awo2 -m 
E(X, v-)eiwo7 dr . a2A(x, t> &coz-wot) + c c 

at2 
. . 

1 d%(W) =--- . d2A(x, t) ei(!w-wot) + c c 
2.2! aw2 w. at2 . .I 

and similarly, 

Now let 

76 

(4.27) 

(4.28) 

(4.29) 

If one then inserts these expressions for D, into L9, one obtains the following: 

a2 
P = -p+Dr+Da+Ds+.. 4 

= Wo2A(X t) 
, 

_ wo2 Mx, t> 
at 

t> _ wo2 a2A(x, t> 

at2 

+ . . .] ew-Jot) + (.-. (4.30) 

Grouping this according to the order of the temporal derivative gives 

-wo2~(wo) - A(x,t) - i 2 ww> 2wo~(wo) + w. dw 
. aA+, t> 

at 

ww> +Jo) + 2wo --gy 
a2A(x, t) 

* at2 wo 
+--.]e i(koz-wet) + c.c. (4.31) 

For convenience, let us now only work with one of the three fields j at a time as 

well as transform (4.31) into a scalar equation. This is done by letting con2(w)A(x,t) = 



&(e(w)GiA(x, t)) where 6 is a unit vector in the direction of A(x, t), i.e. A(x, t) = iSA(x, t). 

This gives 

1 i$.D I.= -__ -wo2n2(wo)A(x, t) - i 
an” (w) 

2won2(wo) + wo2 dw 
dAtx> t> 

2c2 at 

%z2(w) 
n2(w0) + 2~0 ____ 

WC? aW(w) d2A(x, t) 
dw wo +2! aw2 ai? 

+ . . . ] ei(koz-wot) + c.c. (4.32) 

Observing that 

n(w0b0 
= ko, 

C 
(4.33) 

&a2 (w) 
2w0n2(w0) + wo2 7 ffww) = 2c2ko __ , and (4.34) 

wo dw wo 

Iwo=c2 [(~~-.,‘+ko~lW-j, (4.35) 

one can arrange (4.32) in the following form 

6.22 = ; w4 ko2A(x, t) + 2iko aw a45 t> 
wo at 

ak(w) 2 - [( I) ad wo 
+ k. a2ktw> a2A(x, t) II 1 aw2 wo at2 ei(lcozmwot) + C.C. (4.36) 

ZZ f ko2A(x, t) + 2ik& Wx, t> dt 

- (P,2 + koh) d24x, t> 
at2 I 

ei(koz-wot) + c c . . (4.37) 

Here, the quantities ,f$ are defined as 

~1 = %I and 
wo 

p2 = a2%4 
dW2 w. * 

(4.38) 

(4.39) 

Eqs. (4.37) and (4.23) can then be substituted back into the original wave equation 

(4.19), taking the dot product of i! with both sides of (4.19). The result is 

a2A(x, t) 
ax2 

_ p2 a2AtxT 4 1 ai? > 
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+ ‘&k dAtx> t> 
0 dx + VtA(x, t) - 2 [6 . V(V . E(x, t))e-i(kozpwot)] 

Wo2 _ -2& /jldAtx7t) 
0 at 

+ kop2 82A(x, t> 
at2 

- -6. p,Nyx,q. 
C2Eo 

(4.40) 

Here, as mentioned before, the nonlinear polarization has been assumed to be of the form 

PNL(x, t) = t(P,NL(x, t)ei(koz-wot) + cc.), (4.41) 

and that 

(w2PiL(x, t) 1 >> w ap’~~x~ t, / , and I a2p~~x~ ‘) / . (4.42) 

Finally, in the limit that the envelope function A(x, t) variation is small over a wavelength 

(slowly-varying envelope approximation), a further simplification can be made. Under 

this condition, which is the same as neglecting any backward-propagating wave,74-77 for 

a wave traveling at velocity l/&, 

or 

Eq. (4.40) is then 

dA(x, t> 
az 

+ p1 aAcx, t, N 0 
at (4.43) 

(4.44) 

2iko dAtx> t) dz + VtA(x, t) - 2 [G + V(V . E(x, t))eCi(koz-wot)] 

aA@, t) LIZ -2ikoPl at 
+ k 

0 
/j2 a2AtX, t> 4 

at2 
- -6 . P,NL(x, t). 

c2QJ 
(4.45) 

For envelope variations on the order of the pulse length rP, the slowly-varying envelope 

approximation will be valid for crP >> X. Taking 10X as the threshold,78 Eq. (4.45) should 

hold for pulse lengths longer than approximately 30 fs. It should be also noted that this 

approximation will also fail if the nonlinear coupling is strong enough to cause significant 

amplification over the scale of a few wavelengths. 
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Spatial walkoff 

The term involving the divergence of the electric field in Eq. (4.45) is nonzero since the 

electric displacement and electric field are not, in general, parallel. This also is manifest in 

the Poynting vector S and wave vector not being parallel in general. The displacement is 

perpendicular to k and has two orthogonal polarizations. The field is perpendicular to S 

and its polarizations are not necessarily orthogonal. This is true for extraordinary waves 

in uniaxial crystals and for any polarization direction in biaxial crystals. This gives rise 

to the phenomenon of spatial walkoff where the extraordinary waves travel in a different 

direction than k. After a long enough distance, the two beams will no longer overlap. 

For most crystals, the difference between the propagation directions of ordinary and 

extraordinary waves is on the order of a few degrees. For nanosecond laser pulses prop- 

agating in crystals of lengths of several centimeters, the effect can be significant if the 

beam sizes (or feature sizes) are of the order of a few millimeters. However, for ultrashort 

pulses, the crystal lengths will be on the order of a few millimeters or less, and so this 

effect will be much less important. Nonetheless, it will be included for completeness. For 

uniaxial crystals, this term becomes approximately7’ 

V(V . E(x, t)) = -2ikop %x, t> 
dX 

with 

1 htw, 0) 
’ = n,(w,e) de O=B, 

being the tangent of the walkoff angle. 

(4.46) 

(4.47) 
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Nonlinear polarization 

Eq. (4.46) can then be substituted into (4.45) giving 

2iko dAtx, t, ~4% 4 
6% + 02,A(x, t) + 2ikop alc 

iWx, t) ZZ -2ikoPl at + kop2 a2Atx, t) ~02 
at2 

- -4 * P,NL(x, t). 
C2E0 

(4.48) 

The final part of the puzzle is to determine the form for PzL(x, t), including both second- 

and third-order contributions. The general process for determining the precise form for 

this term is to assume that the total electric field in the material is a sum over some set 

of frequency components, i.e. 

E(x, t) = f $ [A,(x, t)ei(“iz-wjt) + c.c.1 

3=1 

(4.49) 

with the central frequency of each component field being at wj, etc. When this form 

of E(x, t) is inserted into the definitions for P(j) (Eq. (4.18)), many terms are obtained 

related to all possible interactions for that set of frequency components. All of the terms 

involved in THG will be given in the next section. 

4.2 Coupled wave equations 

The nonlinear partial differential equation shown in Eq. (4.48) describes the evolution 

of a wave at a given polarization direction with a narrow frequency spread about some 

central wavelength. In reality, there are n of these equations for each possible polarization 

direction and central frequency that will be involved in the interaction, and n will usually 

be a very large number. However, for efficient transfer of energy from one wave to another 

to take place, the waves must be in phase throughout the interaction region. This phase- 

matching requirement is normally satisfied by using birefringent crystals to compensate 
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for the difference in the phase velocities of the different waves in the solid. For second 

order interactions, there are basically three interaction types, classified as18 

Type 1 slow + slow 3 fast 
Type II fast + slow + fast 
Type III slow + fast + fast 

where the order is taken to be from the longest wavelength to the shortest. The terms 

fast and slow refer to a wave polarized along the “fast” axis (lowest refractive index) or 

“slow” axis (largest index). For example, for negative uniaxial crystals, the fast axis is 

the extraordinary axis and the opposite for positive uniaxial crystals. The notation using 

fast (f) or slow (s) to designate the indices of refraction is more general and holds equally 

well for biaxial crystals. 

For third order interactions, there are now seven, i.e. (23 - 1)) possible combinations. 

However, our concern will be restricted to harmonic generation (all input waves of same 

wavelength) so that for third order interactions, the interactions will be specified as 

Type 1 slow + slow + slow + fast 
Type II slow + slow + fast 4 fast 
Type III slow + fast + fast + fast 

where the order on the left side of the arrow is unimportant (the three waves are of the 

same wavelength). 

Assuming that only third harmonic generation is phasematched, the significant waves 

will be the fundamental (with both possible polarizations) and the third harmonic. It 

will be seen that the waves at the second harmonic (both polarizations) will also become 

important and need to be included. These will be denoted using subscripts defined in the 

following way: 

1: lw (slow polarization), 
2: lw (fast polarization), 
3: 2w (slow polarization), 
4: 20 (fast polarization), and 
5: 3w (fast polarization). 
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This means that ~5 = 3~0, ~3 = ~4 = 2~0, and w1 = w2 = ~0. The set of wave equations 

governing the total interaction will then be 

~AI - II 
ax -h$ - 3321% + &Al - pl(H,)$ 

+swl 
. [ nlc ~lAlI”Al+ 3C,XPMIA512A~ + 3C,XPMIA212AI] 

iWl 
+ G 

[ 
* &&Ale iAklz + d3A4ATeiAk3z + d2A3A;ei‘%Z + d4A4A;eiAk4z 

* + dsAsA,e iAk5z + &A5A;eiAk7z 

+ 3ClA5AaAle * iAkgz 36 
+ 2 

*2 iAkloz -AsA, e 
I 

(4.50) 

aA -pl,c!$ - ;p22!?L$ . - XI aA 
ax + &%A2 - bag 

+z 
. [ 

F[Az[~A~ + 3CfPMIA512A2 + 3C,X’“/Al[2A2] 

iw2 
+ 722~ [ 

* &&Ale iAkzz + d4A4ATeiAk4z + d6A5A;eiAk6z 

* iAkaz + d8A5A3e +,$iA5A;2e”aksz 1 (4.51) 

aA aA - = -p13--- 
at ;p23!$ ’ aA 

ax + $‘:A3 - p3(&+- 

+z ; [ ~lA~l”n, + 3C,XPMIA512As + 3C,XPMIA212A3 + 3C7X’“,Al,2Aa] 

+ s 
[ 
4 2 _Z_Alc-ZAklz + d2AaAle- iAkzz + d7A5ATeiAk7z 

* iAkaz + d8A5A2e 1 (4.52) 

a-44 aA - = -p14--- ax at ;@24$ + &A4 - ~a(~,,)~ 

+zw4 
’ [ n4c 

TlAq12Ap + 3C,XPMIAs12Aq + 3CFPMIA2)2A4 + 3C,X,r”lAl12A4] 

+ $ TAle-“Ak3Z + d4A2Ale-iAk4Z 
. [ 

6 2 * iAk5z + dsAsAle 

* ink@ + dsA5A2e 1 
aA 
- = -PI5 

aA 
ax - - $25$ + &A5 - P5(&)$ at 

~lAg12~5 + 3CfipMIA212A5 + 3C&pM[Al/2A5] 

+ 2 [dgAqAlepiAk5Z + dGA4Aae- ink@ + dTA3Ale- iAk7z 

J 

(4.53) 
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+ dgAsA2eC iAksz 3Ci 2 
+ 2 

-AlA2e- iAkgz c2 3 
+ -TA1e-zAkloz I 

In these equations, A,$ are defined as 

Ak, = k3 - 2kl 

Ark2 = k3 - k1 - k2 

Ah3 = k4 - 2k1 

Ak4 = kq - ICI - Ic2 

Ah5 = k5 - k4 -ICI 

Ark6 = I&, - k4 - it2 

Ak7 = kg - k3 - kl 

Ali& = kfj - Ic3 - It2 

Akg = I& - 2lq - k2 

Aho = k5 - 3kr 

(4.54) 

(4.55) 

(4.56) 

(4.57) 

(4.58) 

(4.59) 

(4.60) 

(4.61) 

(4.62) 

(4.63) 

(4.64) 

The terms & and ,&j are simply pr and ,& for the jth wave. The coefficients dj and Cj are 

the effective nonlinear coupling coefficients defined in terms of the nonlinear susceptibilities 

as 

d = $1 a ~(~1 : &$3/Z (4.65) 

and 

c = 61 * X(3)i&&$&/4 (4.66) 

where I& represents a unit vector in the polarization direction of the kth wave in the 

order given for A,$ above (see Tables 4.1-4.2). The factors of l/2 and 3 appearing in 

Eqs. (4.54-4.50) are due to the degeneracy in polarization and wavelength that appears 

in some of the terms (see, for example, pg. 26 of Ref. 72). In Eqs. (4.54), (4.51), and 
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Table 4.1: Second- and third-order coupling coefficients dj and Cj, respectively, as used 
in Eqs. (4.50)-(4.54). Th e vectors i& and i3f refer to the slow and fast polarization unit 
vectors, respectively. 

dl = iS3 . x(~)(~w; w, w) : &i?1/2 = es . x(~)(~w; w, w) : &i&/2 
d2 = ti3 . xc2)(2w; w, w) : &162/2 = es . x(~)(~w; w, w) : k&/2 
d3 = S4 . xc2)(2w; w, w) : cS1&i1/2 = iSf . xc2)(2w; w, w) : @,/2 
d4 = S4 . xc2)(2w; w, w) : iQ2/2 = Zy . xc2)(2w; w, w) : i&6,/2 

d5 = iA5 e xc2)(3w; 2w, w) : &i&/2 = iZf - xt2)(3w; 2w, w) : $f&/2 
d6 =65.x(2)(3 w, w, w) : i&&/2 = 6f . xc2)(3w; 2w, w) : 6+f/2 *2 
d7 = iS!5 - x(~)(~w; 2w, w) : 63e1/2 = 6f - xc2)(3w; 2w, w) : ~&,/2 
dg = e5 - xc2)(3w; 2w, w) : i&i?!,/2 = ef . xc2)(3w; 2w, w) : e,Gf/2 

cl = 65 * Xc3)(3W; w, W, w)i6++l/4 = + . Xc3)(3w; W, W, w)ii??&&/4 

c2 = 65 * x(3)(3 w; w, w, w)&6$1/4 = Bj * x(3)(3w; w, w, w)ie,e,8,/4 

Table 4.2: Third-order coupling coefficients CfPM and CTpM, as used in Eqs. (4.50)- 
(4.54). The superscripts SPM and XPM indicate the process is self-phase modulation and 
cross-phase modulation, respectively. The vectors B s and Bf refer to the slow and fast 
polarization unit vectors, respectively. 

CfPM = e1 * $3) (w; w, -w, w)ie$&/4 = es . g3yw; w, -w, w)i6,~,~,/4 
c,sPM = e2 * x (3)(W; W, -W,W):i?26$.~/4 = 6f * Xc3)(W; W, -W, W):i%f++/4 

cfPM = 23 * xc3)(2w; 2w, -2w, 2W)ii$&j&/d = es . Xc3)(2w; 2w, -2w, 2w)ii@,&/4 

CfPM = 64 . xc3)(2w; 2w, -2w, 2w)&&64/4 = $f . xc3)(2w; 2w, -2mega, 2w)i6$$f/4 

CtPM = 6.5 . xc3)(3w; 3w, -3w, 3w)ii?56565/4 = 15f . xc3)(3w; 3w, -3mega, 3w)iGfefC!f/4 

CFPM = 61 * xC3)(w; 3w, -3w, w)%565&/4 = 63 * $3) (w; 3w, -3w, w)iyq$/4 

cFPM = 61 * Xc3)(W; W, -W, W)i&&i+i = es * Xc3)(W; W, -W, W)ii+f6s/4 

c,xpM = & - Xc3)(W; 3W, -3W, W)i&5&562/4 = &f ’ Xc3)(W; 3W, -3W, W)ii+j6.f/4 

czPM = 6’2 * Xc3)(W; W, -W, W)i6~~~~2/4 = 6f * Xc3)(W; W, -W, W)k&i+/4 

ccPM = 63 . x(~)(~w; 3w, -3w, 2W)%!5&563/4 = & - xc3)(2w; 3w, -3w, 2~)iiQi+i%~/4 

c,xpM = 63 * xc31 (2~1x7; w, -w, 2W)i~&i+d = es * Xc3)(2w; w, --&I, 2~)i~~6&/4 

CpPM = iS3 . xc3)(2w; w, -w, 2~)i&&6~/4 = Cis . x(~)(w; w, -w, w)iiQ&,/4 

czPM = 64 . xc3)(2w; 3w, -3w, 2W)ii&&i$/4 = 8j * xc3)(2w; 3w, -3w, 2w)i+++/4 

c,xpM = 64 - xc3)(2w; w, -w, 2w)i&&&4/4 = 6f . xc3)(2w; w, -w, 2w)iC$q+ /4 

c,X,PM = 64 . xc3)(2w; w, -w, 2w)ii@~&/4 = i?j 1 xc3)(2w; w, -w, 2w)i6,&iQ/4 

c,xpM = 65 * Xc3)(3W; W, -W, 3w)i626265/4 = ef * Xc3)(3W; W, -W, 3W)i+f+/4 

C&PM = 65 * xC3)(3w; w, -w, 3w)i&@5/4 = &f * x(3)(3w; w, -w, 3w)~@&/4 
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(4.50), the contritmtion due to cross-phase modulation by the second harmonic wave has 

been neglected since this wave will never reach appreciable intensities. All interactions 

are assumed to he collinear, i.e. a 11 waves propagate parallel to z axis in lah frame. 

4.2.1 Cascaded third harmonic generation 

It is instrnctive to simplify Eqs. (4.54-4.50) greatly in order to observe the effect of t,he 

second harmonic t,erm. Ordinarily. such terms would he neglected because they are un- 

phasema.l.ched. However, as has been shwn previously. 2*~30~31~80 ” the fact that the third 

harmonic and fundamental waves are phasematched allows for t,he possibility of conversion 

to the third lxumonic even with no third order coupling (C,? = 0) as illustrated in Fig. 4.2. 

SHG 

kiw krw b 
km klw 

k3w > 
SFG 

Figure 4.2: Illustration of processes involved in third harmonic generation via cascaded 
second-order processes. The first process is SHG (w + w + 2 w,indicated hy the left brace) 
followed hy sum frequency generation (SFG. 2w + iu‘ + 3~. indicated by t,he right, brace). 
The space between kzi and kl, on the second line indicates a possihle phase mismatch 
for SHG and SFG processes. 

For low conversion. t.he fundamental waves can be assumed to he constant (no pump 

depletion, i.e. tlAl/az = tlAJ& rz 0). and; to a good approximation. the individual 

interactions can be assumed to be independent of each other. For illustration, let us 

examine Type I phasemat~rhirrg and consider the interaction 00-o + 00-e. Finally, let 

us neglect longit.udinal and transverse spatial dependence of the pulse as well as self- 

(c”P” = (I) and cross-phase modulation (CfPL1 = 0 3 ). for simplicity. Eqs. (4.54-4.X)) 



reduce to 

aAl . -= 
ax 

2 dlA3ATeiAklZ + d7A5AjSeiAk7z + +5A;2e~Ahoz 1 (4.67) 

N 0 

aA -=- 
a2 

aA - Ix 
az 

(4.68) 

(4.69) 

As before, A3 is the electric field envelope for the second-harmonic wave polarized along 

the slow-axis, and A5 is for the third-harmonic wave polarized along the fast-axis (e.g. 

~5 = 3w, wa = 2w, and WI = w). If the third-order interaction is neglected for the moment 

as a further simplification (C2 = 0) and A/Q is set to 0, these equations can be solved 

analytically. Differentiating (4.68) and substituting (4.69) and (4.68) into the result gives 

a second order ODE with constant coefficients which is easily solved. The final solutions 

A3(4 = -..!!!LdlATe~Ak7ZI’ sin(x 
2n3cC 

and 

A5(4 = s [ewiAk7z/2 (cos(z + 9 since) 

with 

52 = =d2jA112 + 
n5n3c2 7 

When converted to intensities (I = ceonlA12/2), these become 

2 d& 
- 
E0cn3 

sin2 [x 

and 

- 

(4.70) 

1 1 (4.71) 

(4.72) 

(4.73) 

d&J1 
15(x) = ___ 

A@ Ak7x A,+ AlQZ 
4nldf 

1+ cos2 5.Z + - 
4c2 

sin2[z - 2cos[xcos - - - 
2 I 

sin [x sin - 1 2 * 

(4.74) 
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Although Eq. (4.74) appears to have only a linear dependence on the input fundamental 

intensity 11, a further approximation can be made for most circumstances, i.e. < N 

q + Ak7/2 where 

rl= (4.75) 

with rl << Ak7. Eq. (4.74) then takes on the following form (again, no third-order coupling) 

(4.76) 

This compares with the standard solution for THG involving only the third order nonlinear 

susceptibility of (setting dj = 0 in ((4.68) and 4.69)) 

15(z) = 
w2c2 

5, ; 
n5n1EOc 

4 1,322. (4.77) 

It is clear that these two solutions have the same form if one defines an effective nonlinear 

coefficient Ce~ for the cascaded second-order process as 

C& = ~ w3 dld7. 
nscAk7 

(4.78) 

With the first term in the parentheses in Eq. (4.76) equal to roughly 15-30 for typical values 

of w, n, and Ak: and dj being about lo-l2 m/V, Ce~ Z 10-23-10-22 m2/V2. This is in the 

same range as is expected for the values of C due solely to the third-order susceptibility. 

In fact, Bloembergen3r states that the contributions from these two processes should be 

of the same order of magnitude. 

Qiu and Penzkofer28 proceed along a somewhat different path to arrive at the con- 

clusion for specifically BBO. They do not assume perfect phasematching and present 

results indicating that the cascaded second-order process should also have the standard 

sinc2AlcZ/2 dependence on the THG phase mismatch. However, there are substantial er- 

rors in some of their approximations as well as in the expressions they give for the effective 



Table 4.3: Possible interactions for THG. The polarization directions f/s are given in order 
of longest wavelength to shortest. 

Phasematching Type SHG int. SFG int. THG int. 
Type 1 

Type II 

Type III 

ss-ks ss-+f 
ss+f sf+f 

sss -+f 

SS-M fs+f 
sf-+s ss+f 
ss+f ff-+f 
sf+f sf--+f 

ssf-+f 

sf+s fs-+f 
ff-+S ss+f 
sf+f ff-+f 
ff+f sf+f 

sff+f 

nonlinear coefficients which invalidate their results. Nonetheless, the errors do not affect 

the qualitative conclusions which they draw, 

4.2.2 Effective nonlinear coupling 

It is necessary to account for all possible second order interactions, including ones not 

typically phase-matchable (Table 4.3). Of course, any of these interactions can take place 

for any phasematching configuration. However, for each phasematching Type, efficient 

THG will occur only for the interactions shown as a result of phasematching. 

Because all possible polarization combinations can affect high intensity frequency 

conversion, it is necessary to calculate the effective nonlinear coefficient dj for each of the 

crystal classes. For all of these, Kleinman symmetry will be assumed so that the second- 

order tensor dijk can be reduced to the standard symbol di,. Here the m is determined 

as shown in Table 4.4. The numerals 1, 2, and 3 represent the x, y, and z components. 



Table 4.4: Relationship between subscripts of dijk and dim+ 

Table 4.5: Relationship between subscripts of C’ijkl and Ci,. 

m jkl 
1 111 
2 222 
3 333 
4 233, 323, 332 
5 223, 232, 322 
6 133, 313, 331 
7 113, 131, 311 
8 122, 212, 221 
9 112, 121, 211 
0 123, 132, 213, 231, 312, 321 

The term S&s from Eq. (4.65) is then given by the following matrix 

me31 

e22 e-32 

e23e33 

e22e33 + e23e32 

e2le33 + e23e31 

e2le32 + e22e31 

e2ze3z 
= (4.79) 

e2ye3z + e2ze3y 

e2xe32 + e22e3x 

e2xe3y + e2ye3s 

(It must be remembered here that the subscripts 2 and 3 in (4.79) only indicate position 

in Eq. (4.65) and do not directly refer to the five waves.) The third-order tensor Cijkl can 

be similarly reduced to a 3 x 10 matrix Ci, under these conditions following the rules 

shown in Table 4.5.83 The term &i+4 in Eq. (4.66) can be written as a 10 x 1 vector in 

a fashion similar to (4.79) using Table 4.5 as a guide. 
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Since the dispersion of even the second-order susceptibility is unknown and has been 

neglected, only the polarization directions involved will affect the effective coupling for each 

interaction, independent of wavelength (or order in Table 4.3). Therefore, the effective 

nonlinear coefficient will need to be calculated for only the following interactions: sss, 

ssf, sff, fff, sssf, ssff, and sfff. These are presented in Tables 4.6-4.9 for second-order 

interactions in uniaxial crystals. 

Following these are the effective nonlinear coefficients for third order interactions; 

there are five possible polarization configurations. In Tables 4.10-4.14, Kleinman symme- 

try is assumed which means that any frequency dependence of the tensor elements has 

been neglected. In this case, the nonlinear coefficients are the same for any third-order 

interaction (THG, SPM, or XPM), depending only on the polarizations of the interacting 

waves. 

4.2.3 Self-phase modulation 

Recently, there have been several published works 84-86 that suggest that the effect of SPM 

on SHG is actually quite dependent upon the dispersion that exists between the nonlinear 

refractive index n2 at the fundamental and second harmonic (where n2 is defined by 

n = no + n21Ej2 = no + 71). In fact, the value for y has been measured to vary from 

2-4 ~1O-l~ cm2/W from 1064-400 nm,87 indicating significant dispersion exists. The 

nonlinear refractive index is related to Ceff by 

(4.80) 

and so the dispersion of n2 in SHG is the same as dispersion between C,“,‘“(-w; w, -w, w) 

and C:g”(--2~; 2w, -2w, 2~). 

There are two points which should be made: first, that as seen in the actual form of C&E 



for the various interactions, the actual value for Ce~ is highly dependent on propagation 

angle, and since the fundamental and second harmonic waves are typically of different 

polarizations (e.g. ordinary vs. extraordinary), the angular dependence will be different. 

Even if there is no actual dispersion in the tensor elements, the effective coupling, and 

thus the value of n2 is not equal. For example, we shall assume Type I SHG in KDP 

(class 42m) where 4 = 7r/4 and 8, = n/4. Th en SPM for the fundamental is an oooo 

interaction, and for the second harmonic, it is an eeee interaction. The effective nonlinear 

coupling is then proportional to 

‘1, = f (cl1 + 3&) (4.81) 

for the fundamental and 

(4.82) 

for the second harmonic. It is clear that although the tensor elements are assumed to 

be independent of wavelength, the values for self-phase modulation for the fundamental 

and second harmonic are formally very different in KDP. The actual difference between 

Eqs. (4.81) and (4.82) is unknown because the tensor elements crs and Csa are unknown. 

This complicated angular dependence of Ce~ for even self-phase modulation (the inter- 

action of a wave with itself) indicates that the nonlinear refractive index must be measured 

with much greater attention to the crystal orientation than has been done in the litera- 

ture to this point. It is typically measured for ordinary waves and extraordinary waves 

at some wavelength, and then this value is used for any crystal orientation. Presumably, 

this measurement is usually done for 8, = n/2 and 4 = 0 (or 7r/2). For KDP under these 



conditions, 

Cord = err and (4.83) 

Cext = Cl1 + c33. (4.84) 

Second, SPM and XPM are subject to similar cascaded second order interactions 

as has been discussed concerning third harmonic generation.88-g0 DeSalvo et al. give a 

formula for an effective second order nonlinear refractive index of 

n2,eff = - 
47-c y-& 

ccoXn2wn$ Ak 
(4.85) 

for second harmonic generation which is slightly unphasematched (AkZ 5 100). This effect 

exists no matter what the phase mismatch is, as long as the process transfers energy to 

some other frequency or pair of frequencies. This means that the contribution to the 

effective second-order nonlinear index is the sum of all possible interactions of the form 

w + wr + wp followed by ~1 + w2 -+ w (keeping in mind that wj can be negative as well). 

The question as to the effect of SPM and XPM on high intensity frequency conversion 

is at best a complicated issue. The angular dependence is some mixture of second- and 

third-order effective coupling coefficients involving an infinite number of unphasematched 

three-wave interactions. It is unlikely that any “subtle” effects such as dispersion of 

the third-order susceptibility tensor elements could be separated in any useful way. To 

effectively model the many interactions and the relative effects of each is beyond the 

scope of this work, but some concrete examples of the effects will be discussed in the next 

chapter. 

4.2.4 Optimal input intensity 

Finally, in order to compare the relative strengths between different phasematching con- 

figurations, it is necessary to account for the different initial intensities for each wave. For 
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Type I phasematching, the input beam is polarized along the slow polarization axis and 

so 11 = 1i, and 12 = 0. However, for other phasematching types, the input intensity is 

divided between the fast and slow polarizations. 

For Type II SHG, for example, 14 K 1211 and 12 + 11 = Iin. Maximizing the product 

1211 gives 12 = 11 = Iin/ as is obvious. In fact, it is a common practice to split the 

ordinary wave into two waves, each with half the intensity even for Type I phasematching 

in order to use the same code for either phasematching condition. This is possible because 

the l/2 induced in this manner gives the same answer as using a single wave with the 

factor of l/2 introduced due to the degeneracy of the waves. 

For third order interactions, this ansatz no longer holds. For example, for Type II 

THG, 15 0: 121; which is maximized for 12 = 1r/2 = Iin/3. If one were to treat it as 

the interaction of three distinguishable waves of a third of the total intensity, it would 

introduce a factor of l/27 while the degeneracy factor (or lack thereof) for the third-order 

interaction of four distinguishable waves would introduce a factor of 62 = 36. It is clear 

that the apparent symmetry for second-order interactions which permits the arbitrary 

treatment of a wave as multiple distinguishable waves is not generally valid. Higher order 

interactions must be treated more carefully. 

Thus, for Type I THG, the intensity at the third harmonic is proportional to 12 = $,, 

but for Type II phasematching, the third harmonic intensity is proportional to 121: = 

41:/27. This means that the “effective” input intensity of the fundamental for Type 

II phasematching is 4/27 times that for Type I phasematching. When comparing, for 

example, the nonlinear coupling between Type I and Type II THG, this difference in the 

effective input intensity between the two phasematching configurations must be taken into 

account. 
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Table 4.6: Effective nonlinear coefficient for second-order interactions, neglecting disper- 
sion. 000 interactions. 

Crystal class d eff 
3 -dll sin 34 - d22 cos 34 

3m -d22 cos 34 
6 -dll sin34 - d22 cos 34 

6 and 4 0 
6mm and 4mm 0 

622 and 422 0 
6m2 -d22 cos 34 

4 0 
32 -dll sin 34 

32m, 33rn and 23 0 

Table 4.7: Effective nonlinear coefficient for second-order interactions, neglecting disper- 
sion. ooe interactions. 

Crystal class d eff 

3 cos B,(dll cos 34 - d22 sin 34) + d31 sin& 
3m -d22 cos 13~ sin 34 + d31 sin 0, 
s cos O,(dll cos 34 - d22 sin 34) 

6 and 4 d31 sin em 
6mm and 4mm d31 sin 8, 

622 and 422 0 
Gm2 -d22 cos 8, sin 34 

4 - sin Om(d31 cos 24 -t d36 sin 24) 
32 dl1 sin 19, cos 34 

32m, 43m and 23 -d36 Sin 8, Sin 24 

Table 4.8: Effective nonlinear coefficient for second-order interactions, neglecting disper- 
sion. oee interactions. 

Crystal class d 
3 cos2 &(dll sin;: + d22 cos 34) 

3m d22 cos2 8, cos 34 
F cos2 O,(dll sin 34 + d22 cos 34) 

6 and 4 0 
6mm and 4mm 0 

622 and 422 0 
6m2 d22 cos2 8, cos 34 

;T sin 2&(dsfi cos 24 - d31 sin 24) 
32 dll cos2 0, sin 34 

32m, 33rn and 23 sin 2&d36 cos 24 



Table 4.9: Effective nonlinear coefficient for second-order interactions, neglecting disper- 
sion. eee interactions. 

Crystal class d eff 
3 cos” O,( -dll cos 34 + d22 sin 34) + 3d31 sin 0, cos2 8, + dss sin3 0, 

3m d22 cos3 t+,, sin 34 + 3d31 sin Brn cos2 kJm + d33 sin3 Bm 
6 cos3 O,( -dll cos 34 + d22 sin 34) 

6 and 4 3d31 sin &,, cos2 8, + d33 sin3 8, 
6mm and 4mm 3d31 sin 0, cos2 8, + d33 sin3 8, 

622 and 422 0 
6m2 d22 cos3 13, sin 34 

;1 3 sin 0, cos2 0,(dss sin 24 + d31 cos 24) 
32 -dll cos3 8, cos 34 

42m, 33rn and 23 3d36 sin 8, COS2 f&, Sin 24 

Table 4.10: Effective nonlinear coefficient for third-order interactions, neglecting disper- 
sion. 0000 interactions. 

Crystal Class c eff 

Trigonal 
(3 and 3) 

Trigonal 
(3m, 3m, and 32) 

Hexagonal 
(6,6, 6/m, 622, 6mm, G/mmm, 

and 6m2) 

Tetragonal 
(4, 4, and 4/m) 

Tetragonal 
(42m, 422, 4mm, and 4/mmm) 

Cubic 
(23, m3,432,33m, and m3m) 

Isotropic 

Cl1 

Cl1 

Cl1 

i [Cl1 (3 + cos 44) + 6C1t-j sin2 2q5] + C21 sin 44 

t [Cl1 (3 + cos 44) + 6C18 sin2 241 

+ [Cl1 (3 + cos 44) + 6Clf5 sin2 2q5] 

Cl1 
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Table 4.11: Effective nonlinear coefficient for third-order interactions, neglecting disper- 
sion. oooe interactions. 

Crystal Class c eff 

Trigonal 
(3 and 3) 

Trigonal 
(3m, 3m, and 32) 

Hexagonal 
(6, 6, 6/m, 622, 6mm, G/mmm, 

and 6m2) 

Tetragonal 
(4, a, and 4/m) 

Tetragonal 
(42m, 422, 4mm and 4/mmm) 

Cubic 
(23, m3,432,43m, and m3m) 

Isotropic 
- 

sin em(clo cos 34 + Cr5 sin 34) 

Cl0 cos 34 sin 0, 

0 

- cos 8, [C2r cos 4f#~ + f sin4#(3Crs - Crr)] 

$ cOS 8, sin @(cl1 - 3c18) 

$ cos 8, sin44(Crr - 3&s) 

0 

Table 4.12: Effective nonlinear coefficient for third-order interactions, neglecting disper- 
sion. ooee interactions. 

Crystal Class c eff 

Trigonal 
(3 and 3) 

$Tll ~08~ 8, + Cl6 sin2 8, + sin 28, (cl0 sin 34 
- Cl5 cos 34) 

Trigonal 
(3m, 3m, and 32) icll COS2 8, + cl6 Sin2 8, $ cl0 sin%& Sin 34 

Hexagonal 
(6, 6, 6/m, 622, 6mm, G/mmm, 

and 6m2) 
$cll c~~2 8, + cl6 sin2 8, 

Tetragonal 
(4, 2, and 4/m) 

Tetragonal 
(aam, 422, 4mm and 4/mmm) 

f COS2 8, [cl1 Sin2 24 + cl8 (3 COS2 24 
- 2c2, sin 44] + cl6 sin2 8, 

- 

- i cos2 8, [cl1 sin2 24 + c18(3 cm2 24 ' 

+ cl6 sin2 8, 

1) 

111 
Cubic 

(23, m3, 432, 33m, and m3m) 

Isotropic 

ij c0s2 8, [Cl1 sin2 295 + Crs(3 c0s2 24 - l)] 
+ cl6 sin2 8, 



Table 4.13: Effective nonlinear coefficient for third-order interactions, neglecting disper- 
sion. oeee interactions. 

Crystal Class c eff 

Trigonal 
(3 and 3) 

- .3 cos2 0, sin O,(Cru cos 34 + Cl5 sin 34) 

Trigonal 
(3m, $m, and 32) 

Hexagonal 

-3Cro ~0s~ 8, sin Om cos 34 

(6, 6, 6/m, 622, 6mm, G/mmm, 
and 6m2) 

0 

Tetragonal 
(4, 2, and 4/m) ~0s~ e,[czl cos 44 + $ sin44(3Crs - Crr)) 

Tetragonal 
(42m, 422, 4mm and 4/mmm) $(3cl8 - cll) cos3 em sin44 

Cubic 
(23, m3, 432, 23m, and m3m) $ @cl6 - cll) cos3 8, sin44 

Isotropic 

Table 4.14: Effective nonlinear coefficient for third-order interactions, neglecting disper- 
sion. eeee interactions. 

Crystal Class c eff 

Trigonal 
(3 and 3) 

Trigonal 
(3m, srn, and 32) 

Hexagonal 
(6, 6, 6/m, 622, 6mm, G/mmm, 

and 6m2) 

Tetragonal 
(4, 4, and 4/m) 

Tetragonal 
(22m, 422, 4mm and 4/mmm) 

Cubic 
(23, m3, 432, 33m, and m3m) 

Isotropic 

4 sin 8, ~03~ em(c15 cos 34-Cl0 sin 34) +Cll cos4 8, 

-t $&j sin2 mm + c33 sin4 8, 

-4Cro sin 0, c0s3 0, sin 34 + Cl1 c0s4 0, 

+ $C16 sin2 28, + Csa sin4 8, 

cl1 cos4 em + qc16 sin2 2&, + c33 sin4 8, 

COS4 8, [ $ cl1 (3 $- COS 44) -t g cl8 Sin2 24 $- 2cz1 Sin 441 
-t $& sin2 28, + c33 sin4 8, 

icll COS4 8& i- COS 44) -t- $c16 Sin2 28, 

+ $c18 COS4 8, sin2 24 -k c33 sin4 8, 

$Cll [COST 8,(3 + cos 44) + sin4 e,] 
+ $cl6 [sin2 2&, + cos4 8, sin2 241 

Cl1 
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4.3 Biaxial crystals 



Figure 4.4: Polarization eigendirection angle S with the k-z plane as a function of polar 0 
and azimuthal C$ angle in a biaxial crystal. 

with 

B=- np(ni + n2)sz + n$(nz + nYf)st + n2(n$ + ni)s!j 
(w42 + (synJ2 + (s,n,)2 

and (4.87) 

n2n2n2 
’ = (s,n,)2 + (s”,iy)zz + (sZn,)2’ 

(4.88) 

The terms sj are the direction cosines given by s, = sin 0, cos q5, sy = sine, sin 4, and 

s, = case,. Obviously, n+ denotes the index of refraction of slow wave and n- denotes 

the index of the fast wave. 

The polarization directions (of the electric displacement D) of these two eigenindices 

are orthogonal to k and make an angle S and b + 7r/2 with the k-z plane, respectively. The 



Figure 4.5: The birefringence An = n+ - n- of a biaxial crystal with n, = 1.496, nY = 
1.538, and n, = 1.566. 

angle 6 is given byg5~g4~g3 

s 5 cot-l cot2 V sin2 8, - cos2 8, cos2 = C$ + sin2 6, 
cos 8, sin 2d 

where V is the angle between the optic axes and the z axis, 

1/n; - l/n: 
‘Ot2 ’ = l/n& _ l/n; 

or 

(4.89) 

(4.90) 

sinV= !I? 
( > 

np - n3 

nY nz--nz’ 
(4.91) 

Although Eq. (4.89) has a period of only 7r/2, the relative signs of the numerator and 

denominator can be used to extend this to n-. This angle S is plotted in Fig. 4.4 against 0 

and 4. The apparent discontinuity is really the same polarization (rotated by 180”). The 

optic axis for this crystal (d-LAP) is 0 = 71” and C#I = 0”. The birefringence n+ - n- of a 



representative biaxial crystal is shown in Fig. 4.5 in the first octant. The minimum is the 

position of the optic axis at an angle 0, = V. 

The polarization eigenvectors in the crystal frame are then 

E . = If-l&) 3 3 

so 

e, = T-l 

= 

and 

- cos 6 

-sin& 

0 

-cos8,cos~cosS+sin~sin6 

-costI,sincbcosS - cos4sin6 

sin 8, cos S 

sin 6 

6f = lr-l _ cos 6 

0 

1 

(4.92) 

(4.93) 

r 
cos 8, cos 4 sin 6 + sin C$ cos 6 

= cosfJ,sin+sin6 - cos+cosS . (4.94) 

- sin 13, sin 6 

These can then be used to determine the effective nonlinear coupling coefficients as be- 

fore. However, because of the angular dependence of the polarization eigendirections, the 

formulas are so complicated that little is gained from writing them out explicitly, even 

for second-order interactions. Therefore, only those for the sss interactions for the eight 

biaxial crystal classes wiil be given in Table 4.15 as an example. The others are simply 

calculated using the procedure described here. 



Table 4.15: Effective nonlinear coefficient for second-order interactions in biaxial crystals, 
neglecting dispersion. sss interactions. Only 4 of the 10 independent elements are shown 
for class 1. 

Crvstal Class d dT 

1 

2 

drr (sin 4 sin b-cos 8, cos 4 cos S) +3dr2(sin 4 sin a--cos 19~ cos 4 cos 6) x 
(cos (p sin S + cos 8, sin (b cos 6)2 + 3drs sin2 0, cos2 G(sin 4 sin b - 

cos 0, cos q5 cos S) + 
6d 14 sin 0, cos b (sin 4 sin 6 - cos 0, cos 4 cos S) (cos 4 sin 6 + 

cos Om sin $ cos S) 
+... 

- (cos g5 sin S + cos S cos 8, sin 4) X 
{c&(cos d)sin b + cos S cos 0, sin(6)2+ 
3dz1 (cos 6 cos 8, cos q5 - sin 6 sin 4)2- 

6d 14 cos 6 sin 0, (cos 6 cos 4 cos 8, - sin S sin 4) + 3d2s cos2 S sin2 6,) 

m 

(-cos6cosf?,cosf$+sinf5sin$)x 
{d~r(-cosScos8,cos~+sin6sin~)2+ 

3d31 cos 6 sin 0, (- cos S cos em cos 4 + sin S sin 4) + 
3d12(cos (p sin 6 + cos 6 cos Bm sin(p)2 + 3d13 cos2 6 sin2 0,}+ 

3d32 cos 6 sin B,(cos 4 sin 6 + cos 6 cos t3, sin 4)2 + d33 cos3 6 sin3 8, 

222 sin 19, cos 6 [cos 0, cos 24 sin 26 + sin 2+(cos 2S - sin2 &)I 

mm2 3d31 (sin 4 8, sin b - cos cos cos 4 6) + 
3d32 sin &, cos S(cos 8, sin 4 cos 6 - cos 4 sin S)2) + d3s sin3 8, cos3 6 

1, 21 m, mmm 0 

4.4 Material considerations 

One of the main limiting parameters in the frequency conversion of ultrashort pulses is 

the mismatch of the group velocities of the waves involved in the interaction. Since the 

dispersion between the group velocities of the fundamental and the generated harmonic 

increases as the frequency separation increases, this effect will be even more pronounced 

for third harmonic generation. The same holds for the phase velocities so that achieving 

phasematching for a given configuration requires more birefringence for the nonlinear 

medium. For example, KDP phasematches at about 41” for Type I and about 59” for 

Type II SHG, but phasematches at 65” for Type I THG and Types II and III are not 
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phase-matchable at all. Also important are the sensitivity to changes in angle (most 

important for focused-beam geometries) and the sensitivity to the bandwidth of the pulse 

(since not all frequency components will be phasematched simultaneously). 

In Tables 4.16-4.24, several of these material parameters are given for several second- 

and third-order interactions involving the negative uniaxial crystals potassium dihydrogen 

phosphate (KDP), potassium di-deuterium phosphate (KD*P), ammonium dihydrogen 

phosphate (ADP), barium borate (BBO), lithium iodate (LiIOs), and cesium lithium 

borate (CLBO) using published Sellmeier and nonlinear tensor element dij data.g6*g7 The 

phasematching angle 0, is the angle which solves the equation Ak = 0, and it can be found 

analytically for uniaxial crystals under phasematching configurations for which only one 

wave is polarized along the extraordinary axis. For example, for Type I phasematching of 

a second-order process in negative uniaxial crystals, the phasematching equation is 

Ak=~+=o 
w 

which implies that n4 = nr. The angular dependence of the extraordinary index is 

[ 

* 2 2 
n”(O) = 4f,z + To,: 

I 

-1 

(4.95) 

(4.96) 

where no and ne are the eigenindices for a wave exactly polarized along the ordinary and 

extraordinary axis, respectively. Eq. (4.96) can be inserted into (4.95) which gives, solving 

for the angle, 

0, = cos-l [+g]1’2. (4.97) 

Similarly, for Type I direct THG in a negative uniaxial crystal, the phasematching angle 

is 

0, = cos -1 [@$-Z]l’/‘. (4.98) 
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For other phasematching configurations, Ak = 0 must be solved numerically. In Ta- 

bles 4.16-4.24, the presence of a dash (-) for Bm indicates that that particular process 

cannot be phasematched in that crystal at room temperatures (all calculations are done 

for room temperature). 

The terms AN and A8Z are known as the spectral and angular acceptance bandwidths 

and are defined as 

(4.99) 

and 

(4.100) 

These definitions come from the first order term in Fourier expansions of Ak in terms 

of X and 8, respectively, and give the spread in wavelength or angle which reduces the 

generated irradiance by half of its maximum value. g6 The angular acceptance will be of 

lesser interest for our purposes, but because of the large spectral bandwidths associated 

with short pulses, the spectral acceptance will be critical. Of particular interest is the 

large spectral acceptance of the KDP isomorphs in Tables 4.18 and 4.19. This is due 

to the fact that both the indices of refraction and the slopes of the index dispersion for 

the fundamental and second harmonic can be simultaneously equal (or nearly so) near a 

fundamental wavelength of 1053 nm. l8 The wavelength position of the near-IR absorption 

resonance of the material determines the wavelength of the fundamental for which this 

will occur. However, for most materials, this is further into the infrared, which is seen in 

the much smaller spectral acceptance bandwidths for interactions at 820 nm. 

Related to the spectral acceptance bandwidth for transform-limited pulses is the in- 

teraction length due to the group velocity walkoff between two pulses lint = AVERS where 

rp is the temporal pulse length and Au, = (l/v,1 - 1/vug2)-’ (vgj are the group velocities 
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of the two waves). For example, for second harmonic generation, 

dAk dk2, *ale, akw 

- = 2a(zw)-z-dw l3W 
(4.101) 

2 1 1 = ~-__-_c 
v9,2w VW v9,w 

(4.102) 

which implies that 1 int will be large (as well as AN) if the group velocities match according 

to Eq. (4.102). In Tables 4.16-4.24, the value for Au, is the difference between the ordinary 

fundamental and the extraordinary second, i.e. ~/v,O,~, - l/~i,~~, (Tables 4.16-4.21) or 

third, i.e. l/v,O,,, - l/v&, (Tables 4.22-4.24) harmonic for the given phasematching 

angle. If Au, is given as an ordered pair, the second value is the difference between the 

ordinary and extraordinary polarizations of the fundamental. 

An interesting consequence of this limitation on the interaction length imposed by this 

group velocity walkoff effect is that, for second-order processes, the conversion becomes 

dependent upon the input fluence and not the input intensity. For example, it is known 

that for the non-depleted pump regime, second-harmonic generation is described by 1~~ cx 

I$“. If’the input pulse is sufficiently short such that I int < I, (where 1, is the physical 

crystal length), the 1~~ oc lzZi?,t. Since 1, z I’/rP, 

Izw oc ?(Av~)~~; = r2(Av9)2, 
7; 

(4.103) 

or the generated intensity is independent of the input pulse length. However, for third- 

order interactions such as third harmonic generation, lsw o( 121” so that if lint < Z,, 

13w oc ~(Av&~$ = 
lY2(Av,J2 

9 
. 

I-P 
(4.104) 

For third-order interactions, higher conversion efficiency can ostensibly be achieved by 

decreasing the input pulse length. 

The final interaction length due to transverse spatial walkoff is given by Z$lkoff % 

d/p(8) where d is the beam diameter. As is shown in Tables 4.16-4.24, p 2 2”-4” which 
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means that /walkoff mt is at least several centimeters for beam diameters of a millimeter or 

larger. Except for the special case of KDP near 1 pm mentioned above, this interaction 

length is much longer than those due to GVM walkoff/spectral bandwidth for short pulses. 

In addition, the effective nonlinear coupling coefficients are given: d,ff for the second- 

(2) order interactions SHG and SFG and C,, for (single crystal) third harmonic generation. 

The term CL2 refers to the expected contribution to the coupling to the third harmonic 

due to the cascaded second order processes, i.e. for Type I phasematching 

+ d&i 
nSw Ah 1 

and for Type II phasematching 

+ d4& + &ds + d& 
$,A& n$,Aks I n;,Aks * 

(4.105) 

(4.106) 

The definitions of Akj and dj are those given in Eqs. (4.55)-(4.62) and Table 4.1, and the 

ordering of the sets of Ak in Tables 4.22-4.24 is (Ak7, Aks) for Type I phasematching and 

(Ak7, Aks, Ak8, Ak6) for Type II phasematching. 

In this section, only parameters for uniaxial crystals have been discussed. Biaxial 

crystals present greater possibilities since, instead of a single phasematching angle 0, for 

a given configuration, there is a loci of angles {@,, 4) which satisfy the phasematching 

condition. Contour plots of these loci are shown in Appendix B for eight biaxial crys- 

tals: lithium triborate (LBO), potassium titanyl phosphate (KTP), LAP, deuterated LAP, 

potassium lathanum nitrate (KLN), potassium cerium nitrate (KCN), barium magnesium 

fluoride (BMF), and lithium formate (LFM). It is therefore possible to choose the angle 

pair which maximizes deff or perhaps it is possible to choose the phasematching angles 

such that the group velocity mismatch is minimized or that SPM/XPM are minimized. 

Several parameters for comparison are given in Table 4.25. 



Table 4.16: Interaction lengths and bandwidths for Type I SHG at 820 nm. 

Material 0, (p~~v, 4 bd) 
AJiZ At’Z 

(nm cm) (mrad cm) cm/s 
KDP 44.2” .27 44 1.4 .82 1.7” -1.5 

KD*P 43.3” .27 44 1.3 .89 1.6’ -1.3 
ADP 44.7” .27 44 1.3 .76 1.8“ -1.3 
BBO 28.3” 1.9 46 .56 .33 3.8” -.57 
LiIOs 41.1’ 4.6 - .19 .22 5.0” -.19 
CLBO 34.4” .54 n-14 .83 .71 2.0” -.84 

Table 4.17: Interaction lengths and bandwidths for Type II SHG at 820 nm. 

Material 8, 
A 

AxZ At?Z 
(nm cm) (mrad cm) ’ 

(xl32 
cm/s) 

KDP 68.8” .26 0.0 1.3 2.2 1.1” C-33,.69) 
KD*P 70.7” .24 0.0 1.4 2.7 .96” i-8.8,.82) 
ADP 71.5” .23 0.0 1.2 2.3 1.1” (-100,.62) 
BBO 40.9” 1.3 0.0 .60 .54 4.4” (-1.4,.53) 
LiIO9 64.5” 0 - .21 .57 3.6” c-.40,.23) 
CLBO 51.5” .94 0.0 .88 1.3 2.0” ‘(-i.i,.9j 

Table 4.18: Interaction lengths and bandwidths for Type I SHG at 1053 nm. 

Material &,, 

KDP 41.2” 
KD*P 38.62” 
ADP 41.7” 
BBO 23.0” 
LiIO3 30.3” 
CLBO 26.1“ 

.26 

.24 

.26 
2.0 
3.5 
.42 

A 
AiiZ AOZ 

(nm cm) (mrad cm) 
p (xl%2 

cm s 
32.6 1.1 1.6” 20 

14 1.2 1.5” -8.7 
22 1.0 1.7” 13 
2.0 .5 3.2” -1.2 
.61 -.34 4.3” .37 
2.3 1.1 1.6” -1.4 

Table 4.19: Interaction lengths and bandwidths for Type II SHG at 1053 nm. 

Material 9, 
AxZ AOZ 

(nm cm) (mrad cm) ’ 
(fl32 
cm/s) 

KDP 59.2” .34 0.0 15 2.2 1.4” (1.8,.76) 
KD*P 59.8” .34 0.0 16 2.6 1.3” (2.5,.98) 
ADP 61.6” .33 0.0 22 2.1 1.4” (1.5,.68) 
BBO 32.8” 1.6 0.0 2.0 .77 4.0” (:6.&.77) 
LiIO3 44.6” 0.0 0 .65 .58 4.7” (-.81,.39) 
CLBO 37.8” .93 0.0 2.4 1.8 2.0 (-3.OJ.5) 
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Table 4.20: Interaction lengths and bandwidths for Type II SFG, w + 2w + 3w, (ordinary 
2w and extraordinary lw) at 820 nm. 

Material 8, (p$v) 4 b4 
AxZ AOZ 

A 

(nm cm) (mrad cm) ’ 
(xl”042 
cm s 

KDP - 
KD*P - 
ADP - 
BBO 53.3” .79 0.0 .93 .59 4.5” (-.12,.36) 
LiIO3 - 
CLBO 75.5” .47 0.0 1.3 2.7 1.0” t-.30,.60) 

Table 4.21: Interaction lengths and bandwidths for Type II SFG, w + 2w + 3w, (ordinary 
2w and extraordinary lw) at 1053 nm. The second line for BBO (0, = 60.7”) is for an 
SFG interaction with extraordinary 2w and ordinary lw waves. 

Material 8, (p$&) 4 b-4 
AxZ A8Z 

A 

(nm cm) (mrad cm) ’ 
(xl32 
cm s 

KDP 59.1” .34 0.0 15 2.2 1.5” (-.85,.76) 
KD*P 61.8” .32 0.0 21 2.7 1.3” (-.82,.95) 
ADP 60.8” .33 0.0 19 2.1 1.6” (-.79,.69) 
BBO 38.6” 1.3 0.0 2.9 .74 4.4” (-.36,.59) 
BBO 60.7” .53 0.0 5.4 .92 3.7” (-1.2,.31) 
LiIOs 61.9” 0.0 0 1.0 .76 4.1” (-.12,.25) 
CLBO 48.8” .95 0.0 3.5 1.7 2.1” (-.54,1.0) 

Table 4.22: Interaction lengths and bandwidths for Type I THG of 820 nm. 

Material & C$ AxZ nez 
(pm/V)2 (nm cm) (mrad cm) 

KDP - 

ADP - 
BBO 51.0” 33 .12 .18 4.6” -.17 (-4670,732O) - 
LiIOs - 
CLBO 68.6” 6.8 .19 .62 1.5” -.29 (-2750,449O) 



Table 4.23: Interaction lengths and bandwidths for Type I THG at 1053 nm. 

Material 8, C$ AxZ 081 
A 

(pm/V)2 (nm cm) (mrad cm) 
p (xl”o”l2 (c;sl) 

cm/s) 
KDP 65.4” 2.2 1.1 .93 1.3” -.99 (-2230,195O) 

KD*P 63.2” 2.3 .92 .94 1.3” -.85 (-1890,191O) 
ADP 66.9” 1.9 .99 .90 1.3” -.91 (-2500,219O) 
BBO 37.7” 77 .38 .24 4.4” -.35 (-2400,330O) 
LiIO3 58.1” 0.0 .13 .21 4.5” -.ll (-5010,835O) 
CLBO 46.0” 13 .56 .56 2.1” -.51 (-1260,205O) 

Table 4.24: Interaction lengths and bandwidths for Type II THG. The four phase mis- 
match parameters are (-12300, 4190, -4670, 11800) cm-‘, (-6180, 1870, -2400, 5650) cm-‘, 
and (-3550, 1200, -1260, 3490) cm -l for lines 1, 2, and 3, respectively. 

C$ AxZ A0Z 
A 

Material X1, (nm) 8, 
(pm/V)2 (nm cm) (mrad cm) ’ 

(Xl% 

cm/s 
BBO 820 67.6” 16 .13 .37 3.2” (-.25,.28) 
BBO 1053 47.1” 110 .40 .35 4.4” (-.51,.43) 

CLBO 1053 60.0” 47 .59 .95 1.8” (-.70,.77) 

Table 4.25: Material parameters for 8 uniaxial and 8 biaxial (see Appendix B) crystals. 
Sellmeier parameters were obtained from Ref. 96 except for CLBOg7 and KLN and KCN.g8. 
The term dmax indicates the largest element of dij in pm/V, y is the nonlinear refractive 
index in cm2/W, n gives the ordinary (uniaxial) or smallest (nz, biaxial) refractive index 
at 1064 nm, An gives ne - no (uniaxial) or n, - . . n, (biaxial), and Phasematch indicates 
if the material is phase-matchable for Type I THG at 1053 nm. 

Material Class dmax y (cm2/W) An n 
Transpar. 

range (pm Phasematch. 

KDP 42m .39 3 x lo-r6 -.0339 1.4938 .18-1.7 yes 
KD*P 42m .4 - - .0373 1.4928 .2-2 yes 
ADP 
BBO 
LiIOx 

42m 
3m 

6 

.56 
2.2 
7 

- -.0384 1.5065 .18-1.5 Yes 
5 x lo-l6 -.1125 1.6551 .2-2.6 yes 

- -.1406 1.8571 .3-6 yes 
CLBC 42m .96 - -.0505 1.4882 .18-1.2 yes 

LiNb03 3m 30 - -.0786 2.2340 .33-4.5 no 
Urea 42m 1.3 - -.1019 1.4811 .2-1.8 yes 
LB0 mm2 1.2 - .0399 1.5656 .16-2.6 yes 
KTP mm2 14 - .0901 1.7386 .35-4.5 no 
RTP mm2 14 - .0881 1.7659 .35-4.5 no 
LAP 2 .93 - .0701 1.4973 .25-1.3 Yes 

d-LAP 2 .93 - .0695 1.4960 .25-1.3 yes 
KLN mm2 1.1 - .0617 1.4856 .32- -1.5 yes - 

--___ 
- -___ --_------ 

KCN mm2 1.1 - .0628 1.4889 .4- -1.5 yes 
BMF mm2 .04 - .0238 1.4436 .19-10 no 
LFM mm2 1.7 - .1442 1.3593 .23-1.2 yes 
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4.5 Numerical solution of coupled wave equation 

The system of equations (4.54-4.50) of course cannot be solved analytically, and so nu- 

merical techniques must be used. One such algorithm that is commonly used to solve this 

sort of system is known as the beam propagation method or the split-step method.“-‘e2 

The right-hand sides of (4.54-4.50) are separated into a dispersive/diffractive part (all 

terms involving time and space derivatives) and a nonlinear part. Expressed in operator 

notation, this means that 

3 = (Dj + Nu)Aj + N2j a.2 

where 

and, for example, 

F,AI,~ + 3C,XPMIA512 + 3C,XFMIA2,2] 

(4.107) 

(4.108) 

(4.109) 

and 

N21 = 3 
nlc 

dlA3A;eiAk” + d3A4A;eiAk3’ + d2A3A;eink2” + d4A4A;eiAk4z 

+ d5A5Al;e.iAk5z + d7A5A$eiAk7’ 

* iAkgz + 3ClA5AGAle 36 
+ 2 

*2 iAkloz -AsA e (4.110) 

These two classes of operations are assumed to function independently for an appropriate 

choice of the z-interval AZ. Eq. (4.107) can then be split into three equations which can 

be solved independently 

% = DAj, 
az 

(4.111) 

2 = NljAj, and 
dz 

(4.112) 



(4.113) 

The dispersive/diffractive step can be solved easily by moving to Fourier space and 

replacing a/axj with ikxj and d/at with -iwe. Then 

A@+l) 
.I 

= ~-1 ,Dj(w,k)Az F[A;F)]] (4.114) 

where the superscript (n) in parentheses denotes the step n and the dispersive operator 

llDj (w, k) in Fourier space is 

(4.115) 

The nonlinear part is handled in real space with Eq. (4.112) (the phase modulation part 

NU of the nonlinear operator) giving rise to a simple exponential solution Al?“’ = 

exp(Nlj AZ)Ap’. However, the solution of the coupled set of equations of the form (4.113) 

must be done using some sort of numerical technique such as Runge-Kutta. It was found 

that second-order RK was adequate which means the following difference equation 

yen+‘) = ,@I + Azf(z@) + A2/2,7~(~) + $f(~‘~), y’“‘)) (4.116) 

gives the solution to a differential equation of the form 

g = f(wY)- (4.117) 

The set of difference equations that give the solution to the coupled set of equations 

involving the operators Nzj is then 

A(“+l) = 
1 

A?) + AZ2 { dlf3fi*ei*kl(Z(n)+A,/2) + d3f4f;eiAk3(x(“)+A2/2) 

+ d2f3f2*ei*kz(z(n)t*z/2) + d4f4f2*ci*k4(z(“)+*z/Z) + d5f5f4*eiAks(z(“)+Az/2) 

+ d7~55f3*ei*k7(z(n)+*e/2) + 3~~fsf2*f;~iAbs(z(~)+Az/z) 

I “7 f5(fi*)2eiAklo(z(‘“)+A~/2) , (4.118) 



+ d8f5f3*eiAlcs(z’“‘+Az/z) I 3: f5(f;)2eiAk9(2(n)+Az/2) , (4.119) 

&+‘) = A$) +&i”3 iAkl(z@)+Az/2) 
+ d2f2fle -iAk@)+Az/2) 

n3c 

+ d7f5fl*eiA~7(z(n)+Az/2) + dgf5f2*eiAlis(z(“)+Az/2) , (4.120) 

&+‘I = A?) +&!$ 
. { 

iAk@)+Az/2) + dqf2fle-iArc4(z(“,+Az/2) 

+ d5f5f;eiARs(z(“)+Arlz) + d6f~f2*eiAks(z(8)tA~/2) 
> 

, and (4.121) 

A?+‘) = A?) + AZ2 { d5f4fle-iAks(z(“)!-n2/2) + d6f4f2e-iAks(z(n)+n,/2) 

+ d7f3fle -iAb(~(~)+Az/2) + ds~3~2e-iAk”(z(“)+Az/2) 

+ 3C’1fi(f~)2e-iAks(z(“)+Az/2) 
2 + $(fl, 

3e-iAk&(“)+Az/2) (4.122) 

where 

fl = A?) + inzwl 
2nlc 

&~@)&)*~iAhz(“) + d3A~)~~)*eiAk3z(“) + ~2~$$)*ei&z(n) 

+ d4Ar) Ap)*eiAk4Z(n) + d5~g) a* eiAks~(n) + d7~(") ~(n)*~iAk~z(~) 
4 5 3 

+ 3ClA~)A~)*~ln)*eiA”gz(n) + 
7 (4.123) 

f2 = Ap) + inzwz 
2n2c 

d2&)&)*eiAkzz(n) + dqAf$$d*eiAk4z(“) + &.&)~~)*~iAk6~(~) 

+ dg&)~~)*~iAk~z(~) + “F &‘(~~)*)2~iAkgz(~) , (4.124) 

f3 = &) + iAzw3 
2n3c 

!+~))2,-%zcn) + ~2A$$$de-iAk,z(n) 

+ d7&)~~)*eiAk7~(n) + &&)~(n)*~iAksZ(~) 
2 7 (4.125) 

f4 = &) + iAzw4 
2n4c 

$(~1”))2~-“Ak,z(~) + dqA~)~(;n)~-if&z’“’ 

+ ~5~~)~~)*eiAb~(‘L) + ~IA~)A(~)*~~A~~z(") 
2 (4.126) 
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f5 = &) + iAzw5 2nsc d7&)&)e-iAh~c”, + d5A~)A~)e-iAk,z(-’ 

+ ,-&A~)A~)~-~A~sz(~) + ~6~~)~~)e-iAk~~(“) 

+ ~(AIn))2~~)~-iAksZ(“) + $$‘)3e-iA”mz’“‘) . 

Finally, by splitting the dispersive operation into two half-steps (over an interval AZ/~), 

one before the nonlinear operation and one after, the overall operation (dispersive and 

nonlinear parts) becomes unitary and the accuracy of the method is improved. This is 

known as the symmetrized or symmetric split-step method.103*100 

A FORTRAN code was written to perform these calculations for all three spatial 

dimensions plus time (or any subset of these). As mentioned previously, the calculations 

include group-velocity mismatch and group-velocity dispersion effects as well as diffraction 

and transverse spatial walkoff (for uniaxial crystals). At present, the initial envelope 

amplitudes IAj (z, y, 0, t) 1 can be a super-gaussian of arbitrary order, or the transverse 

amplitude dependence can be input from an image file from a CCD camera. Providing 

for the input of initial phase information could be added in a straight-forward manner if 

so desired. The code can be used to model any second-order frequency conversion process 

(e.g. SHG, SFG, DFG, OPA) in a single crystal as well as all types of single crystal 

THG. The effective nonlinear coupling coefficients dj and Cj are calculated for the given 

configuration from the reduced nonlinear tensor elements dij and C, following Eqs. (4.65) 

and (4.66). The nonlinear medium can be chosen from the list presented in the previous 

section, and additional materials can be added by inserting the Sellmeier data and the 

appropriate values for dij and C&. 

It was found that even 4-d calculations (with a 64 x 64 x 64 grid and a few tens 

of z-steps) could be run for a typical crystal in a few minutes on a fast workstation if 
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0 0.05 0.1 0.15 0.2 

Long. distance 2 (mm) 

Figure 4 6 Calculated amplitudes of electric field envelope functions Aj as a function 
of propagation distance in the crystal The solid line shows what would be expected fol 
third harmonic in pIeselIte of x (‘1 only while dashed line shows expected behavior fol third 
harmonic in presence of xc’) only The dotted and dash-dotted lines ale the ordinary and 
extraordinary second harmonic waves, respectively 

the second-oldel coupling teuns wele set to 0 However, the inclusion of these telms 

in THG calculations, because they ale unphasematched, introduces a lapidly oscillating 

component in addition to the slowly varying third harmonic wave, i e it becomes a stiff 

set of equations This Iequiles the step size in z to be reduced greatly (by as much 

as a facto1 of 100) The calculation times conespondingly increases to a few hous for 

crystals of a few millimetets thickness An illustration of this in the small signal growth 

of the second and third harmonic waves is shown in Fig 4 6 If the intelaction is due 

only to a third-order nonlinearity, the growth with propagation distance is smooth and 

is simply plopoltional to x2 as expected However, if the THG is due solely to a second- 
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order nonlinear coupling, the growth of the third harmonic wave is modulated due to the 

periodic behavior of the intermediate second harmonic waves. The step size used in the 

calculations must be smaller than this short scale-length variation. 

A test of the accuracy of the model for SHG was discussed in Section 2.2.1 for pulses 

of the nanosecond regime with good results. In addition, second-harmonic conversion 

of both 1053 nm light at 350 fs (parameters for the front end of the Petawatt laser at 

LLNL) and 820 nm light at both 350 fs and 100 fs (the latter pulse length is typical of 

Ti:sapphire amplifier systems) was examined using this code in both KD*P and BBO. For a 

perfectly uniform transverse spatial profile, the calculated maximum conversion efficiencies 

are shown in Figs. 4.7, 4.8, and 4.10(a). In Figs. 4.9 and 4.10(b), the propagation distance 

in the crystal required to reach maximum conversion efficiency is shown. 

The behavior of the curves in these graphs illustrate the effects of self-phase modula- 

tion and GVM walkoff which are significant in the frequency conversion of sub-picosecond 

pulse. (For further calculations of the effects of group velocity dispersion effects, see, for 

example, Sidick et al. lo4t105) First, the decrease in conversion efficiency for higher input 

intensities for Type I phasematching is due to the induced phase mismatch from the non- 

linear refractive index as discussed in Section 4.2.3. Although, as was mentioned, the 

relevant values for the coefficients CyM and CxPM are uncertain, it was assumed that 3 

CFPM = C,spM = 1O-22 m2/V2, CfPM = 1.3CFPM, and that CJxpM = 0 for purposes of 

illustration. This effect is also significant for Type II phasematching, but the conversion 

for low intensities is dominated by group velocity walkoff effects. The effect of the induced 

phase mismatch is less for BBO because the larger nonlinear susceptibility of BBO cause 

that the maximum conversion occurs over a shorter distance, thereby lessening the effect 

of the phase mismatch, i.e. I is smaller so AkZ is also smaller. 
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Input m,emty ,GWkd~ Input ,ntonrny Kwcm’i PJl 

Figure 4.9: Distance in KD*P (a) and BBO (b) crystal required to reach maximum 
corrvwsion efficiency. The solid cnrve is Type I phasematching st 1053 mn (350 fs). the 
dashed curve is Type II phasematching at 1053 mu (350 fs), the dotted curve is Type I 
phasematching at 820 mn (350 fsl. and t.he da&dott,ed curve is Type II phasematching 
at 820 nm (350 fs). 

Figure 4.10: C~~VAI..%~II efficie~~cy for SHG of a mifonn spatial profile at 820 mu (100 f’s) 
(a,) and propagat,ion distance in crystal rcquirnl bu rcsc+l ulaxirrnm corwcrsion cfkicncy 
(tl) for Type I phasernatc~hirI~ in KD*P (solid line). Type II phasematching in KD*P 
(dashed line). Type I phasernat,c:hiug in BBO (dotted line). and Type II phasrmatrhir~~ 
in BBO. 



118 

a I ! ! 

7 i ,,,.. + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \; . . . . I . . . . . . . . . . . A 

i 

Time (ps) 

...................... 

........................ 

0 
Time (ps) 



119 
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Longitudinal distance (mm) 

Figure 4.12: Calculated conversion elficiency as a funct,ion of longitudinal dist,ance fol 
Type I SHC, in KD*P crystal at 1053 nm Isolid line) and 8211 nm idashed line) f350 fs). 

Type I phasematching in KD*I’ at 820 nm and 1053 ml provides a good illustration 

of what can occur as the pulses at differrnt fwquenries walk off from each other in time. 

As seen in Fig. 4.11 (a), as t,he fundamental and second harmonic pulses separate in time. 

conversion still occurs, adding energy to the foot of the leading edge of the second hannonir 

pulse. This pulse distortion becomes worse as t.he p&e propagates in t,he crystal (the 

curves in Fig. 4.11(a,) are t.tw pulse shapes at, .5. 1, 1.5. and 2.3 cm into t,he cryst.al). 

By comparison: because of the linear dispersim properties of KD*P near 1053 nm,‘* t,he 

group velocities of the 1053 nm wave and the 527 run wave are nearly equal. Therefore. 

(see Tal)le 4.18) the propagation distance required to walk off from each other is 3 cm 

The result.ing 2w pulse shown in Fig. 4.11(h) shows no comparable distortion. The slow 

addition of energy to a leading pedestal because of walkoff cam also be seen in Fig. 4.12. 



The curves for both wavelengths have a similar initial rise, but for 820 nm light (where 

walkoff is important), there is a slowly rising tail which is when the conversion is into the 

second harmonic pedestal. The effect of GVM on single-crystal THG will be discussed in 

more detail in Chapter 5. 

In addition to second harmonic generation calculations, this code was also used to 

calculate expected efficiencies for two-crystal THG, again for uniform spatial profiles. For 

two-crystal THG, there is a complex relationship between the SHG efficiency in the first 

crystal and the SFG (and overall) efficiency in the second crystal. Nonetheless, it was 

found that for Type I SHG followed by Type II SFG, calculated overall THG efficiencies 

of approximately 50% were obtained for 200 GW/cm2 input in KD*P at 1053 nm and 

350 fs (the crystal lengths were 2 mm and 1 mm). Increasing the input intensity to 800 

GW/cm2 had only a small effect on the maximum efficiency (approximately 55%) but 

shortened the crystal lengths to 1.2 mm and .5 mm. 

There was also an opportunity to parallelize this code for use on the massively parallel 

Cray T3D using parallel FFT routines written by Tim Williams at NERSC. It was found 

that it scaled quite well with the number of processors used with the execution time 

decreasing almost as l/N for large problems, where N is the number of processors utilized. 

This is true if the overhead required to initialize the job was subtracted. However, the 

need to coordinate the I/O of N processors on a system level has not yet been adequately 

addressed which makes the use of MPP machines more complicated than would be desired. 

And since it has so far been possible to run the problems of interest on a workstation, 

the effort required to manage the I/O issues made running on the MPP machine less 

compelling. However, for larger problems, the decrease in computational time possible by 

using MPP machines with this algorithm will warrant the added effort. 
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4.6 Conclusion 

The number of processes involved in harmonic generation using such high intensity pulses 

is very large, and they all are likely to have a significant effect. Of particular interest is the 

contribution to the generation of the third harmonic of unphasematched, cascaded second- 

order interactions. This shall be examined in more detail in Chapter 5. A computational 

algorithm for modeling the interaction of these five waves has been developed, and some 

calculations for second-harmonic generation of short pulses were presented. Maximum 

efficiencies for two-crystal third harmonic generation were calculated to be approximately 

50-60% in KD*P at 1053 nm. The effective nonlinear coefficients have been presented 

for all possible interactions (if dispersion is neglected) for both second- and third-order 

processes in uniaxial crystals. Finally, the groundwork was presented for performing the 

same calculations for biaxial crystals. However, the formulas are so complicated due to 

the angular dependence of the polarization eigendirections that writing them down is of 

little use. They can, nonetheless, be easily calculated numerically. 



Chapter 5 

High intensity third harmonic 

generation 

Generation of the third harmonic (THG) using the third-order susceptibility is an idea 

that has been around since the inception of nonlinear optics. “J1J06J07 However, since the 

process w +w +w -+ 3w is governed by the third order nonlinear electric susceptibility ~(~1, 

the efficiency of such an interaction is very low unless very high intensity beams are used. 

To this date, the high intensities needed to drive this process has confined most research 

into higher order harmonic conversion to highly focused beams in gases or liquids. This is 

because for nanosecond pulses, material damage thresholds are less than approximately 10 

GW/cm 2. Additionally, even for lasers with pulse energies of 10 J, it is still necessary to 

focus the beam in order to achieve high irradiance. This reduces the effective interaction 

lengths because of spatial walkoff with the small beam waist and the spread in k-vectors 

from the focus. 

However, it has long been held and recently verified for a wide range of pulse lengths17 

that the damage intensity threshold scales inversely with the square root of the pulse 
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length. Coupled with the fact that decreasing the pulse length also increases the peak 

intensity, this makes short pulses attractive for high intensity studies in solids. In addition, 

the advances in chirped-pulse amplification (CPA) laser design in recent years has made 

terawatt-class lasers (and beyond) possible with small-scale laser systems. This technology 

has made it possible to achieve very high intensities (> 100 GW/cm2) in collimated beams 

that will not damage solid material. 

CPA laser systems such as the one described in Chapters 2 and 3 can produce peak 

powers of 1 TW with pulse energies of only 50 mJ. Even with a 2 cm diameter beam, this 

is a peak intensity of 500 GW/cm2 for a gaussian spatial mode. At the same time, the 

surface damage limit is as high as 14 TW/cm2 (Ref. 17) in fused silica at 1 pm. Long 

before such intensities are reached, nonlinear effects of all types will have large impacts on 

the pulse evolution. The main interest of this work is the generation of the third harmonic 

in a single crystalline solid. 

A few studies of single-crystal THG in solid materials have been done recently, par- 

ticularly in BB028>2g using pulse lengths from 5 to 45 ps. In fact, Ref. 28 reports a 

conversion efficiency of 1% with 50 GW/ cm2 input intensity. However, as mentioned pre- 

viously, there are many errors in that paper, and their calculations of Ceff do not match 

the input parameters which they give. In addition, uncertainties in the value obtained 

for Ceff in either reference are such that the observed effect could be due to either an 

entirely cascaded second-order nonlinearity, an entirely third-order nonlinearity, or some 

combination of the two. 

Because of these uncertainties, and taking advantage of the higher intensities possible 

in collimated beams using CPA laser systems, THG in BBO was again examined. Single- 

crystal THG was also studied in two other materials: KD*P and d-LAP, with the largest 
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conversion taking place in BBG. As mentioned previously, larger birefringence is needed 

to phasematch THG than SHG, and this is exacerbated as the third harmonic wavelength 

becomes shorter. It was, therefore, found most convenient to conduct these experiments 

at 1053 nm using the CPA system described in Ref. 49. At intensities of 240 GW/cm2 

we were able to produce up to .6 mJ of third harmonic light in single crystal of BBO 

with conversion efficiencies above 6%. We were also able to observe the azimuthal angular 

dependence for both Type I and Type II phasematching configurations and determine 

the magnitude of the third-order susceptibility tensor elements of BBO relative to the 

second-order elements. Some slight clouding in the bulk of the BBO crystal was observed 

at the maximum intensity, probably due to the intense UV light generated. Finally, if this 

damage can be eliminated, peak conversion efficiencies in the 30-40% range are calculated 

to be achievable, limited mainly by phase modulation effects. 

5.1 BBO 

The material BBO (beta-barium borate, P-BaB204) is of the crystal class 3m. However, 

there is some discrepancy concerning the choice of x and y axes in the literature (they 

are occasionally reversed). lo8 For all other uniaxial classes, this is unimportant under 

Kleinman symmetry conditions because both dij and Cij are isometric on interchange of 

x and y. However, class 3m is not; the IRE/IEEE standard10gT110 defines the axes so 

that drr = 0 and d22 # 0 (x is perpendicular to a mirror plane). The matter is also 

confused with regard to the third-order susceptibility. Butcher-r” gives the nonzero tensor 

elements for linear, second-order, and third-order tensor elements due to crystal symmetry 

requirements. These calculations were later corrected by Zhao112 for classes 42m, 422, 

4mm, 4/mmm, 3,3, 6,6, and 6/m, and Shang and Hsu ‘13 later further corrected 3 and 3 
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and added corrections for classes 3m, 3m, and 32. These results have been published in 

many reference works 114j72,115 along with the forms for dij which follow the IRE standard. 

Unfortunately, the correction Shang and Hsu made to the form for $A, for classes 3m, 

etc., was to define the x and y axes such that y is perpendicular to the mirror plane (m) 

which does not conform to the IRE standard. In fact, this same switch was made by Yang 

in presenting collapsed forms C’ij for all crystal c1asses,116 and he makes special mention of 

how the forms in Refs. 72 and 83 are incorrect. It is easy to show that Shang and Hsu and 

Yang do not use the IRE standard reference frame since, if the x axis is perpendicular to 

m, exchanging x with -x should have no effect because ~(~1 is a fourth-rank tensor and has 

even symmetry. This means that all tensor elements with an odd number of subscripts of 

1 must be zero. This means, for example, that the element ~1223 - xl5 = (3) - (3) - 0, but Shang 

and Hsu report this element as nonzero. The original form given by Butcher should then 

be used. This inconsistency in definition is not critical in and of itself, but when both 

second- and third-order effects play an important role, it will lead to incorrect forms for 

the effective nonlinear coupling. It is also confusing to have many texts referring to this 

form for ~(~1 as complying with the standard definition for the reporting frame for the 

class 3m. The correct form for x t3) for crystal class 3m in the IRE standard reference 

frame is then given in Table 5.1. 

If Kleinman symmetry is assumed, this form also matches that of Midwinter and 

Warners3 which gives 

Cl1 0 0 0 0 cl6 0 c11/3 0 Go 

c= 0 Cl1 0 cl6 -Go 0 Go 0 G/3 0 . (5.1) 

0 -Go c33 0 cl6 0 cl6 0 Go 0 

They state that this form is based on using the nonzero elements of the elasto-optic tensor 
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Table 5.1: Correct nonzero third-order tensor elements for crystal class 3m. 

xxyy = yyxx 

22x2 = yyyy = xxyy + xyyx + xyxy xyyx = yxxy 

xyxy = yxyx 

yyzz = xxzz 

zzyy = zxxx yyyz = -yxxz = -xyxz = -xxyx 

zyyz = zxxz yyyzy = -yxzx = -xyxx = -xxzy 

yyxzy = xzzx yzyy = -yzxx = -xzyx = -xzxy 

yzyz = xzxz zyyy = -zyxx = -zxyx = -zxxy 

zyzy = 2x25 

pij given by Nye. 73 It is also worth noting that Maker et al..’ also present the collapsed 

form C, for all crystal classes (including biaxials) assuming only THG, but not Kleinman 

symmetry. They, however, assume the nonstandard reference frame for the class 3m. 

The crystal which was used in the experiments was from Cleveland Crystals and was 

cut at Bm = 39.03” and 4 = 0”. It has a length of 3.31 mm and was sol-gel AR coated 

at the input for 1053 nm and 527 nm light and at the output for 351 nm light. The 

reflections from the input face are in the range of l-2%, but should be fairly insensitive 

to input angle within the range of use (<15-20” from surface normal). 

With a consistent reference frame for second- and third-order interactions, it is now 

possible to produce an expression for the effective nonlinear coefficient for THG in BBO. 

For Type I phasematching, 

C eff = $22 [dz27 (s - 2) +dlscos34 (cos~;;o” - 2-1 
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+ Cl0 cos 395 sin &. 

The equivalent expression for Type II phasematching is 

(5.2) 

C eff = E kz2(cos23&(2a-$) +sin23+(2s--s)) 

- 2d22d15 sin 34 
sin 8, cos3 em sin 28, 

n&% 
+---- 

n&7 > 

+ d& sin2 em 
~0s~ em 

3----- 
2 

n&b 
+.------ 

n&5 

f- $i6 (- d22 sin 34 cos 8, sin3 8, d15 sin4 0,) 1 + 

+ 3 9 cos2 em + cl6 sin2 8, + cl0 sin%& sin&$ 1 . (5.3) 

Again, Akj are defined by Eqs. (4.55)-(4.64) and ns = n$,,, and n4 = n&,,,(e,) (BBO 

is a negative uniaxial crystal so that the slow axis is the ordinary axis). Particularly for 

Type I phasematching, the difference in azimuthal angular dependence between second- 

order and third-order interactions is significant. This can be exploited to determine the 

relative magnitudes of the two types of interactions in single-crystal THG. The situation 

is somewhat more complicated for Type II phasematching because, first, the angular 

dependences are not so distinct, and second, the value for d3s is unknown since it is not 

involved in SHG. 

5.1.1 Type I phasematching 

In any event, the azimuthal angular dependence of C&, which is proportional to &,/1:, 

is shown in Fig. 5.1, separated into the second-order part and the third-order part. The 

behavior about 4 = 0 will easily show the relative magnitudes of the contributions of 

the different orders. This dependence was measured using the crystal described above 

and the setup shown in Fig. 5.2. An aperture of 4 mm diameter was placed directly in 

front of the crystal in order to ensure that the decreasing crystal aperture as the crystal 
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(4 (b) 
Figure 5.1: Dependence of C,, 2 for Type I phasematching on azimuthal angle 4 for (a) 
second-order interactions only and (b) third-order interactions only. The amplitudes are 
normalized to unity. In (a), dr5/&2 = .16/2.2.1r7 

was rotated had no effect on the measurement. The azimuthal angle was scanned using 

a goniometer from -22’ to +22” in 1” increments, and the energy ratio &sW/&z cc lsw/l; 

was measured at each step (Fig. 5.3). This was done at both 4 mJ input energy and 

at 8 mJ input energy with the same results. This indicates that we are still operating 

in the low drive regime, i.e. &sW oc &2. Approximately lo-20 measurements were taken 

at each angle at 10 Hz. This was then converted to the internal angle using Snell’s law 

q5jnt = sin-l [(sin&,,t)/ns]. Because the crystal axis (which is the axis of rotation) is 

not perpendicular to the surface normal, the change of angle of incidence with change in 

4 ext is fairly involved and using Snell’s law is not exactly true. However, performing the 

necessary coordinate transformations and rotations shows that using Snell’s law gives the 

internal angle to within 1% over the range of interest. 

The spread in the nonlinear coupling at each value of 4 is most likely due to small 

random variations in the pointing of the laser beam. Not only will this change the portion 

of the beam passing through the limiting aperture, but it will also cause slight fluctuations 

in the phasematching angle. In addition to systematic errors, there will also be some 

uncertainty because as 4 is changed, the refraction at the surface also causes 19~ to change 
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Figure 5.3: Effective nonlinear coupling for internal azimuthal angle &nt. ’ 

AC&. Then the nonlinear coupling C& shown in Fig. 5.3 can be expressed as 

C,2, = A{$&2y(=-&$) 

+ COS 345 d22d15 
[ ( 

cos2 8, sin 8, sin em 2 

-___ 
n4Ak nd% I + Cl0 sin 8, (5.4) 

= A { -83.6 pm2/V2 sin 64 + (.61Cre + 9.36 pm2/V2) cos 34}2 (5.5) 

where Ales = 3300 cm-‘, Alc7 = -2400 cm-‘, ng = 1.6755, and n4 = 1.6277. Here, 

values of d22 = 2.2 pm/V and d 15 = .16 pm/V (Ref. 117) are used for the second-order 

susceptibility. It is possible that the origin for (b is slightly off because the crystal c-axis 

was not oriented precisely parallel to the table surface. Therefore, Eq. 5.5 is an equation 

with three unknown parameters: A, Cre, and 40 (4 in (5.5) becomes (4 - 40)) with A 

just a scaling factor and 40 giving the origin. A least squares fit of (5.5) was done on the 



data in Fig. 5.3 and is shown as the line. This resulted in values of A = .4, &o = -lo, and 

.61Cro+9.36 pm2/V2 = -1.8 pm2/V2. This then gives a value for Cre of -1.8f.3 x 1O-23 

m2/V2. The value obtained is sensitive to the value of the zero for 4 which is the main 

source of uncertainty in the value. The light generated via the cascaded second-order 

process at 4 = 15” in 50-60 times that generated from the third order process. 

It should be noted that there is some discrepancy in the reported magnitudes for 

ds1 for BBO (ranging from .02 to .16 pm/V)117-11g and recently, experiments were done 

indicating that d22/d31 < 0, i.e. they are of opposite sign. r2’ This range of da1 gives a range 

for Cre from -.4 to 1.8 x10-23 m2/V2. Tomov et aL2’ give a value of 1O-22 m2/V2 for Cro 

and state that , for Type I phasematching, the third-order nonlinearity is the dominant 

coupling mechanism. This, of course, is completely inconsistent with the data measured 

here. The advantage of this technique for measuring the third-order susceptibility tensor 

elements is that it is not necessary to have an accurate knowledge of the intensity of the 

beams involved, only an accurate knowledge of the angles. The uncertainty in Cl0 then 

rests mainly with uncertainty in the values for the second-order susceptibilities. 

Finally, the sensitivity of the single-crystal THG process to the phasematching angle 

0, was examined. The generated UV signal was reduced to half of the peak value when 

the phasematching angle was changed by about .l”. The side lobes expected from the 

sinc2 functional dependence may be present but could not be clearly distinguished from 

the noise. Also, the spatial profile of the generated UV beam was measured both at low 

power (Fig. 5.4(b)) and at maximum intensity (Fig. 5.4(c)). At maximum intensity, the 

beam was attenuated by passing through 3 filters (about 6-8 mm of glass) which may 

distort the beam profile somewhat. 
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5.1.2 Type II phasematching in BBO 
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Figure 5.5: Dependence of C ,$ for Type II phasematching on azimuthal angle 4 for (a) 
second-order interactions only and (b) third-order interactions only. The amplitudes are 
normalized to unity. In (b), it is assumed that y cos2 0, + Cr6 sin2 ~9~ = 2Clo for 
illustrative purposes. 

By rotating the phasematching angle of the BBO crystal by lo”, it was possible to repeat 

this experiment for Type II phasematching (em = 47.1”). However, as was mentioned 

before, using the form of C,,E (Eq. (5.3)) for Type II configurations is more complex. 

Nonetheless, the dependence on 4 for second-order and third-order nonlinearities is quite 

different as shown in Fig. 5.5. Also, a simplification may be made since it is known that 

for BBO dar < .ld22 so all terms with d& may be neglected. Grouping terms by azimuthal 

dependence gives 

C eff = Adi, cos2 34 + Bdz, sin2 34 

+ sin 34 [D&d15 + Edzzdss + 3Cl0 sin 28,] 

+ F&d15 + 3 Cl1 - cos2 Bm + ~716 sin2 Bm 3 1 
where 

(5.6) 

= 10.3, 
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Figure 5.6: Effective nonlinear coupling for internal azimuthal angle $int. The solid line 
is a fit using known values for second-order coefficients. 

D -2 2n 
[ sin& 

cos3 
8, 

sin 
28, = 

~2WlJ n4Ab 
+---- = 

n&% 
1 5.64, 

2~ sin3 em cos Brn ,‘j! z -- 
x2wo n&k6 

= -1.17, and 

F = 
2n sin4 8, 

-~ = 1.26. 
ktwo n&% 

(5.7) 

where Ok5 = 1870 cm-l, Aks = 5650 cm-r, Ak7 = -6180 cm-r, Aks = -2400 cm-l, 

ng = 1.6755, and nq = 1.6080. 

Now, Cl0 is known from the Type I measurement (same crystal is being used) as 

is 40 so the only unknowns in Eq. (5.6) are d33, Cl1, and Cre. There is no way to 

distinguish between Crr and C 1s. The data obtained are shown in Fig. 5.6 along with the 

fit obtained using Eq. (5.6). The fit parameters obtained are A = .lO, da3 = 1.7 pm/V, 

and Cl1 (cos2 0,) /3 + Cl6 sin2 8, = 4.0 f .2 x 1O-23 m2/V2. The value obtained for d33 is 
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somewhat sensitive to values used for dr5 and can range from 1 to 5 pm/V. The value for 

the third-order tensor elements is much less sensitive, thus the confidence interval given. 

This value agrees with the range given by Tomov et al. of 2-8 ~10~~~ m2/V2 and is on 

the low end of that given by Qui and Penzkofer of 6.4 f 2.8 x 1O-23 m2/V2. However, 

the level of 1% conversion efficiency is not reached until 80 GW/cm2, not 50 GW/cm2 as 

reported by Qiu and Penzkofer. 

It should be noted again that the input beam in these measurements was a clipped 

gaussian spatial profile. Similar measurements without clipping were done and the maxi- 

mum conversion efficiency achieved dropped to less than 4% for the same range of input 

intensities. The wings are converted very poorly. This illustrates the pronounced effect 

that the I3 dependence on the input intensity has. The response to amplitude variations 

in space and time is even more pronounced than for SHG. It also indicates that flattop 

amplitude profiles can dramatically improve conversion efficiency. 

The behavior of the THG energy generated as a function of input intensity was also 

investigated. The energies obtained at the third harmonic are shown in Figs. 5.7 and 

5.8 along with cubic fits to the low intensity points (<50 GW/cm2). The correspond- 

ing efficiencies are shown in Figs. 5.9 and 5.10. The fit parameters are 5.33 x lo-l1 

J/(GW/cm2)3 for Type I phasematching and 4.45 x lo-r1 J/(GW/cm2)3 for Type II 

phasematching (4 mm beam size) . Type I phasematching gives better conversion even 

though according to the previous calculations, C&(-15”) = 8.2 x 1O-23 m2/V2 while 

c$f(OO) = fi(9.0 x 10-23) m2/V2. The factor m is from the degeneracy factor of 3 

for Type II phasematching coupled with the factor of 4/27 from the initial intensities being 

divided between the two polarizations of the fundamental as discussed in Section 4.2.4. 

Higher conversion efficiencies for Type I phasematching is possible because of the dif- 
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Figure 5.7: Energy output from single BBO crystal at 351 nm almg with cubic fit, t,o low 
drive points. Type I phascrnatching with &It = -15’. 
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Figure 5.8: Energy output from single BBO crystal at 351 nm along with cubic fit to low 
drive points. Type II phasematchinr (& = 0”). 
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Figure 5.9: Conversions efficiency from single BB0 crystal at 351 nm along with qnadrat,ic 
fit to low drive points. Type I phasematching with &int = -15’. 
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Figure 5.10: Comersion efficiency fknn single BBC crystal at 351 nrn along with quadratic 
fit to low drive points. Type II phasematching (&t = 0’;). 
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Figure 5.11: Calculated longitudirlal growth of Type 1 (solid line) md Type II (dashed 
line) 3w energies. 350 fs pulses, 200 GW/cm* input intensity (8 m.J). 

ferent group velocities involved in the two different phasematching configurations. While 

the interaction length I,R = (l/v,l - l/zi,2) ‘7 due to the group velocity mismatch Ire- 

twem t,he fundamental ordinary wave and the third harmonic extraordinary wave is sp 

proximat,ely equal for the two configurations (1.2 mm for Type I vs. 1.7 mm for Type II fol 

a 350 fs pulse), the major limiting factor in Type II phaqemat,ching is the walkoff between 

the two polarizations of the fundament,al bean,. These t,wo waves walk off in approximat,el~ 

1.5 mm which is fairly long, but when t,hese waves do not overlap: no further interaction 

is possible. The resulting temporal effects can lw seen IUOX clearly in Figs. 5.11 5.13 

For Type I phasematching. conversion continues t,o proceed eveu after t,he pulses walk off 

from each other with the energy simply I,eing added to the tail of the 3w pulse (seen in 

Fig. 5.12). The increased energy comes at t,he expense of the pulse length of the third 
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Figure 5.12: Calculated temporal profiles of fundamental (solid line) and third harwmic 
(dashed line) waves for Type I phasrmatchg. 35(1 fs pulses, 3 mm crystal. 200 GW/CI? 
input, intensity. 
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harmonic with the pulse length (540 fs) being determined to some degree by the crystal 

length. This does not happen with Type II phasematching since once the fundamental 

waves walk off from each other, all conversion stops evidenced by the flat line in Fig. 5.11. 

The third harmonic pulse in this case is essentially gaussian (see Fig. 5.13), and the pulse 

length (300 fs) is independent of the crystal length. Thus the pulse energy can be greater 

for Type I phasematching even though the effective nonlinear coefficient is smaller. 

5.2 LAP 

Similar measurements were done for the deuterated (approximately 95%) organic salt 

L-arginine phosphate (d-LAP) with formula 

(HzN); CNH(CH&CH(NHs)+COO-. HzPOq.H2. 

This substance is a biaxial (monoclinic) crystal of point group 2 and transparent from 250 

nm to 1300 nm. It has a pronounced cleavage plane parallel to the b crystal axis (which 

is parallel to the y dielectric axis). The x axis makes an angle of 55” with this plane. The 

2V angle between the two optic axes is wavelength-dependent, but is approximately 142”. 

This makes the bisector of the acute angle between the optic axes the x axis, defining it 

to be a “negative” biaxial crystal. 

A 1 mm thick piece of d-LAP was cut from a boule of the material at a phasematching 

angle 8, of 11” in the x-z plane (4 = O”), mainly because it was easy to identify this plane 

(perpendicular to the cleavage plain). It was found that for so thin a crystal, the ease 

with which d-LAP cleaves caused the cut piece to cleave under the slightest stress. The 

largest piece intact after polishing was approximately 1.5 cm x 5 cm x 1 mm. 
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Although it was at first planned to look at 820 nm THG in this crystal (Type I 

phasematching), this turned out to be impossible. Crystal symmetry of class 2 crystals 

require that any second-order process involving zero or two waves polarized perpendicular 

to the x-z plane have zero coupling. This same symmetry requires that any third-order 

process involving 1 or 3 waves polarized perpendicular to this plane also have zero cou- 

pling (~(~1 (third rank tensor) and x c3) (fourth rank tensor) have opposite symmetry). 

This means that no conversion is possible for Type I phasematching in the x-z plane for 

phasematching angles 0, < V. This is because, as shown in Fig. 4.4, the slow polarization 

is perpendicular to the x-z plane until very near the optic axis. 

However, Type II phasematching is not identically zero in this plane and is possible 

in d-LAP for 1053 nm light although some of the cascaded processes involved are identi- 

cally zero, again from the same symmetry arguments. The effective, non-zero nonlinear 

coefficients are 

4 = -&2, (5.8) 

dq = dg = ds = -dzi cos2 8, + dss sin28, - d23 sin2 0,, and (5.9) 

cl = cl8 cos2 8, + c24 sin2 6, - cl5 sin%& (5.10) 

Again, there exists a nonstandard reference frame which is sometimes used for class 2 

crystals. This nonstandard frame is used by Singh1r5 to give the form for 19,. However, 

C’ij in the reference frame following the IRE/IEEE standard is 

Cl1 0 Cl3 0 Cl5 cl6 Cl7 cl8 0 0 

@= 0 c22 0 C24 0 0 0 0 c29 0 (5.11) 

c31 0 c33 0 c35 c36 c37 c38 0 0 
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Figure 5.14: Measured energy generated at, t,he third harmonic in 1 mm crystal of d-LAP. 
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For Type II phasematching of 1053 nm light, 8, = 20.2”, Aks = 1601 cm-‘, Ales = -2171 

cm-r, n4 = 1.5179, and na = 1.5768. For d-LAP, dai = .40 pm/V, d22 = ..39 pm/V, 

d23 = .83 pm/V, and d36 = -.59 pm/V. 121 The conversion efficiency of d-LAP was 

measured using the aforementioned crystal (Fig. 5.14) and was found to be about 20% 

that of Type II BBO. 

Comparing the conversion of the two crystals is complicated by the fact that the 

BBO crystal is longer than the interaction length of BBO so the exact interaction length 

is unknown, but Z,ff is calculated to be approximately 1.5 mm (see Fig. 5.11). This 

introduces a factor of 1.52 when comparing Ce~ of the two substances. Therefore, 

Cd-LAP N 
eff - (5.13) 

and C’$@O = 9 x 1O-23 m2/V2 for Type II phasematching. Then substituting the ap- 

propriate values into Eq. (5.12) and solving for Cl in Eq. (5.13) gives a value for Ci of 

4 x 1O-23 m2/V2. It is interesting to note that although, after accounting for the dif- 

ferent interaction lengths, the conversion efficiency in BBO is two times that in d-LAP, 

the largest ~(~1 tensor element for d-LAP is less than half the largest element for BBO. 

The d4 dependence would indicate a possibility of over 16 times the conversion efficiency. 

However, the larger phase mismatches involved and larger indices of refraction for BBO 

substantially reduce the cascaded coupling. 

5.3 KD*P 

Similar measurements were also made using a 1 mm thick, 1 in. aperture, piece of potas- 

sium di-deuterium phosphate (KD*P, 99% deuterated, crystal class 22m) as the medium. 

Reported values’22 of C”,,ff - 1O-22 m2/V2 indicated that very efficient single-crystal THG 



could be achieved. Only Type I phasematching is possible at 1053 nm (no phasematching 

is possible at 820 nm), and the relevant effective nonlinear coefficients are given by 

dl = 0, (5.14) 

d3 = d7 = -dsssin24sin8,, (5.15) 

d5 = d36 cos 24 sin 28,, and (5.16) 

c-2 = i(cll - 3cp3) sin4C$cos8m. (5.17) 

The total effective coupling Ce~ is then 

c 
eff 

= 27r W5 
-----+c2 
JKU-, n&b 

(5.18) 

For this configuration, 8, = 61.3”, 4 = 7r/4, Aks = 1906 cm-r, Ak7 = -1885 cm-‘, 

nq = 1.4771, ns = 1.5089, d3 = -.315 pm/V, and d5 = .285 pm/V. 

The value for Ce~ measured was approximately 6 & 2 x 1O-24 m2/V2. This is much 

smaller than that reported in Ref. 122, but is larger than the 8 x 1O-25 m2/V2 given in 

Ref. 26. Again, inserting the various values into Eq. (5.18) gives either C2 = 2 or 10 x 

1O-24 m2/V2, depending on the relative signs of the second-order and third-order contri- 

butions. The resulting value for Cl1 - 3Crs is then 1.8 or 9 x 1O-23 mZ/V2. Because of 

the very small value for C&, the efficiency of THG in KD*P is much less-.005% at 50 

GW/cm2. Scaling to the intensities used for BBO and d-LAP, this would give -08% at 200 

GW/cm 2. Finally, it can be observed from Eqs. (5.14-5.17) that both the second- and 

third-order parts of Ce~ have a sin44 dependence on the azimuthal angle and so there is 

no way to resolve Ce~ into its component parts. In any event, it is clear that KD*P is not 

an ideal material for single-crystal THG. 
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5.4 Higher int,ensities and self-phase modulation 
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Figure 5.16: Calculated amplit,llde (a) and phase (b) involving only xc31 and no explicit 
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diameter and a gaussian temporal profile of 400 fs. They also include values for C2,5f;is 

of lo-“” m*/V* for both fundamental waves md for Cp’” of 1.3 x lo-‘” m”/V2 for the 

third harmonic wave. The cross-phase modulation terms were assumed to he zero, mainly 

hecause there is 110 reliable dat,a for these tcrrns. The values report,ed for the nonlinear 

refractive index y are ahout 5 x lo-‘” cm”/W at 820 nm,** or about 1.7 times that of 

KDP 

Using the formulas for class 3x11 crystals in Tables 4.10 and 4.14, the values for y for the 

two possible polarizations can b,e obtained. For ordinary waves. 7 would be 3Cll/&, 

If dispersion is neglected (which it has brru to t,his point) i this tensor element would be 

the same as that involved in the THG measurements in Section 5.1. However. t,he angular 

measurement for Type II phasematching unly gives .154C11+ .537C16 = .4 x l(l- ” rn’/V” 

arId neither element is known. If Cl1 is assumed t,o be 1.2 x l(l-“’ rri”/V” (obtained from 

y), then Cl6 = .40 x 10m2” &“/V” which at, least is not unreasonable 

As mentioned in the previous chapter, phas? modulation effects at high intensities are 
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Figure 5.17: Calculated amplitude (a) and phase (h) involving only ,$*) and ,$“) with no 
mw’ explicit. SI’M (C, = 0. Input, intensity is 80(1 GW/cm”. Solid line is ordinary funda- 

mental, dash-dotted line is extraordinary fundamental. and dashed line is third harm&r 
(extraordinary). 



148 

really quite complicated and can occur through many channels. The final amplitudes and 

phases of the fundamental and third harmonic waves calculated for Type II phasematching 

in 1 mm of BBO at 800 GW/cm2 are shown in Figs. 5.16-5.18. Of particular interest is 

Fig. 5.17 where no third-order interactions are included in the calculation. Even though the 

overall process is phasematched, the unphasematched intervening second-order processes 

produce significant modulation of the phase of the fundamental waves (up to 1 radian 

across the pulse). When SPM is turned on, the phase modulation becomes very large, 

particularly in the generated wave. Also of interest is that although, for waves at 800 

GW/cm2, the B-integral is about l-2 for the fundamental waves and should be even 

smaller for the generated wave, the accumulated phase at the peak of the 3w pulse is well 

over 3 radians. This is the case whether or not the second-order interactions are included 

suggesting that in the presence of strong phase modulation, the phase of the generated 

harmonics is strongly modulated by the conversion process. Finally, the existence of the 

second harmonic channel produces a much more pronounced amplitude modulation on the 

third harmonic and lowers the maximum achievable intensity. 

5.5 Damage and UV absorption 

A significant limitation is the damage threshold of the nonlinear medium. As mentioned 

previously, surface damage thresholds for pulse lengths of 500 fs should be in the range of 

several TW/cm 2. Bulk damage mechanisms are more varied and less well understood. In 

fact, even for operation at 200 GW/cm2, some bulk damage in the BBO crystal was ob- 

served. The source of this damage is still an open question, but there are some indications 

that it is triggered by the generated UV light. 

After the BBO crystal had been exposed to several thousand shots at full intensity, 



it was examined, and a small, sub-millimeter cloudy spot was observed approximately 

where the center of the beam passed through the crystal. It was difficult to tell where 

longitudinally the spot was, but it was definitely in the bulk, and it was very faint. Prior 

to this, another BBO crystal of approximately the same thickness but not phasematched 

for THG had been exposed to the 1053 nm beam for about 3000 shots at full intensity 

with no apparent damage. 

As the crystal has been used for further experiments, the spot has grown in size to 

perhaps 1.5-2 mm in transverse diameter. This growth could simply be the result of the 

peak of the gaussian beam propagating through different parts of the crystal on different 

days and as the crystal was rotated for the angular dependence measurements, or it could 

be also due to the exposure time being increased to tens of thousands of shots. The 

spot is actually just an amorphous region in the center of the crystal which has clouded 

slightly. There are no tracks or similar morphology visible, and it is still very faint. It 

requires a very bright light in order to see it in the crystal at all. In addition, there 

is no obvious change in the wavelength dependence of the linear absorption as measured 

using a spectrophotometer. Finally, no detectable effect has been observed with regards to 

conversion efficiency, so it may be that the observed damage morphology has little impact 

on usability of the crystal. 

Damage of similar morphology has been observed in other types of crystals after expo- 

sure to short wavelength light, and it has been theorized that it is due to creation of color 

centers at defect sites in the crystal via nonlinear absorption of the high energy photons. 

For 3w pulse energies of .5 mJ, the peak intensities at 351 nm are in the neighborhood of 

20-40 GW/cm2, depending upon the temporal shape of the generated pulse. This is high 

enough to begin to have significant absorption of the UV light via 2-photon absorption. 



For example, the two-photon absorption coefficient p of BBO at 266 nm is approx- 

imately lo-’ cm/W. 123 Using KD*P as a guide, p at 351 nm is about .02-.l times its 

value at 266 nm,124t125 so p for BBO at 351 nm will be 10-ll-lO-lo cm/W. As shown in 

Fig. 5.11, the generated light reaches its maximum by l-l.5 mm into the crystal leaving 

I Z 1.5 mm of free propagation at high intensity. The nonlinear absorption in a material 

is given by exp(-PII) which corresponds to a loss at peak intensity of 4%-36%under these 

conditions. Since the irradiance of the major portion of the pulse is less than the peak, the 

total percentage lost to two-photon absorption will be less. In any event, this indicates 

that there there could be significant 2-photon absorption occurring and may play a signif- 

icant role in both the conversion and the damage process. This has not been included in 

the calculation thus far. Although absorption effects are not explicitly taken into account 

in the model presented in Chapter 4, it is possible to include such effects via the imagi- 

nary parts of the refractive index (linear absorption) and the coefficients CjSPM and CxpM 3 

(two-photon absorption), i.e. p = 31m[CSpM ]/(cocns (no being the linear real refractive 

index). In addition, transient UV absorption has also been shown to significantly decrease 

the conversion efficiency to 266 nm for intensities in the few GW/cm2 range,124 and so it is 

possible that it will impact THG for short pulses with intensities in the tens of GW/cm2. 

In any event, UV bulk damage would appear to be the main limiting factor for in- 

creasing intensities to achieve even higher conversion efficiencies. It is currently unclear 

whether the damage observed is significant from an operational standpoint and at what 

intensities it will become significant. The effect of two-photon absorption on this process 

at higher intensities is also unclear. There is also the possibility, if the damage is due to 

the creation of color centers, to heat the material and anneal out the color centers. 
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5.6 Conclusion 

It has been shown conclusively that cascaded SHG and SFG, even though unphase- 

matched, can contribute significantly, even play the dominant role, in phasematched single- 

crystal THG. Up to 6% of the incident light has been converted to the UV in a single crystal 

of BBO for either Type I or Type II phasematching. The fact that the cascaded second- 

order coupling has a different azimuthal dependence than the third-order nonlinearity was 

used to obtain values for tensor elements of x t3) of BBO: Cl0 = 1.8 x 1O-23 m2/V2 and 

.15Crr + .54Crs = 4.0 x 1O-23 m2/V2, dependent solely on the accuracy of the values used 

for c&j. LAP can also reach conversion efficiencies in the 1% range, and further exploration 

of its parameter space is probably worthwhile. KD*P, however, was found to be an unsuit- 

able material for single-crystal THG because of the relatively small values for the second- 

and third-order susceptibilities. Lastly, if not for material damage limitations, conversion 

efficiencies of 30-40010 are theoretically possible. This is near the calculated theoretical 

maximum for two-crystal THG discussed in Chapter 4, but the required intensity to reach 

this is higher. 
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Chapter 6 

Conclusion and future direct ions 

Basically, two things have been accomplished. First, a 50 fs, multi-terawatt Ti:sapphire 

CPA laser system has been designed and built. It provides 1 W average power at these 

high peak powers with a very clean beam. To accomplish this, a new all-reflective pulse 

stretcher has been designed which takes into account the material dispersion of the laser 

system, thereby eliminating the need for any compensating components which must be 

precisely aligned. The fact that there are only four elements to the stretcher makes it 

incredibly robust and easy-to-use. All other components of the laser system function as 

designed, and the design also includes, for future “growth”, both the pump system and 

Ti:sapphire amplifiers needed to increase the peak power to the 100 TW level. 

Second, relatively high efficiency generation (6%) of the third harmonic in a single 

crystal has been demonstrated in BBO. Although this appears small, it should be re- 

membered that typical conversion efficiency to the third harmonic using the standard, 

two-crystal arrangement is only lo-20% for this range of pulse lengths.25 Although the 

current experimental and calculated maximum conversion efficiencies (- 50% vs. 30-40%) 

are higher for two-crystal THG, the difference is not that large, and the difference in com- 
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plexity in implementing the two schemes in an experimental situation is enormous. It is a 

single crystal vs. two crystals plus dichroic beam splitters, mirrors, and a translation stage 

or some perfectly matched thickness of material. For applications where the energy at the 

third harmonic is not too critical, the simplicity of the arrangement makes single-crystal 

THG extremely attractive if the intensity (> 100 GW/cm2) is available. 

It was also shown that unphasematched, cascaded SHG and SFG plays an important 

role in single-crystal THG at these intensities. In fact, it can account for up to 90-95% 

of the conversion. While this complicates modeling the conversion process, it does have 

the advantage of allowing one to use the relatively full body of literature dealing with 

xc21 rather than taking shots in the dark, hoping to find a material with a large ~(~1 

coupling for THG. It also provides a mechanism, via the angular dependences of the 

effective nonlinear coefficient of the different orders, to accurately determine the values of 

the third-order tensor elements in terms of the known elements of ~(~1. For BBO, it was 

determined that Cro = -1.8 x 1O-23 m2/V2 and .15Cri + .54Crs = 4 x 1O-23 m2/V2. 

6.1 Future directions 

What has been presented here concerning high intensity THG in a single crystal is by no 

means an exhaustive treatise on the subject, but rather, it is just the beginning. Even at 

200 GW/cm 2, the conversion is still in the low-drive regime with a quadratic dependence 

of conversion efficiency on the input intensity. This indicates that even slightly higher 

intensities will see large gains in efficiency. It is also obvious that using flattop beams will 

also produce large gains in efficiency, even within the current range of intensities. 

The most immediate issue which needs to be addressed is the crystal greying which was 

seen in BBO. While the obvious explanation is creation of color centers by the generated 
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UV light, the exact cause should be more carefully determined. It is also unknown if this 

damage has some sort of saturation level, above which the effect is slowed or stopped, or 

whether it can be annealed out by heating the crystal. A simple test would be to down- 

collimate the beam even further to achieve higher intensities and see what happens. The 

extent to which two-photon absorption (and other UV absorption mechanisms) affect the 

generation of the third harmonic needs also to be more carefully examined. 

At a more fundamental level, the effect of phase modulation as the ultimate limiting 

process needs to be fully investigated. To do so, however, a much more complete knowl- 

edge and understanding of both the spectral dispersion and the angular dispersion of the 

nonlinear refractive index needs to be known. Accurate measurements of both temporal 

amplitude and phase of the generated third harmonic and the fundamental before conver- 

sion, perhaps with frequency-resolved optical gating (FROG),126 would also be useful. 

Then comes the question of whether or not there is a material which is even better 

than BBO. Since the energy generated goes as d4/Ak2 for the cascaded process, any small 

improvement in either the effective second-order nonlinear coupling or the phase mismatch 

for the sum frequency generation part, will dramatically improve the conversion. One 

possible candidate would be LiIOs which can almost be phasematched for 1053 nm. Its 

cutoff wavelength is approximately 1065 nm which is probably somewhat dependent on 

how good the Sellmeier parameters are for the near IR. It may be possible to temperature 

tune the crystal to phasematch it at 13, = 90” (noncritically phasematched). LiIO3 has a 

very large d and is transparent quite a ways into the UV. How susceptible it is to damage 

under exposure to high intensity UV light remains to be seen. 

Other possible candidates are d-LAP (examine in detail its full range of phasematch- 

ing angles), CLBO, and lithium formate (LFM). As seen in Section 4.4, the effective 
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Appendix A 

Effects of residual phase on pulse 

shapes 

As discussed in Chapter 3, the uncompensated phase in a CPA system can significantly 

effect both the final pulse length as well as the temporal shape of the pulse. In the following 

graphs, the phase do to uncompensated phase terms according to Eq. (3.4) is added to a 

30 nm wide (FWHM) gaussian spectrum. In other words, the spectral intensity is given 

by 

qw) = ,-2 In 2(~-~o)2/(~~)2 ,idG) (A4 

where ws = 27rc/Xe (X0 = 820 nm) and Aw = 27rcAX/Xi with Ax = 30 nm. Both 

40 and ,& are assumed to be 0. This is then transformed to time (E(t)) via Fourier 

transform giving the resultant pulse shape I(t) = IE(t)12 in time. By Parseval’s theorem, 

the Fourier transform of (I( (the Fourier transform of I(t)) gives the temporal shape 

of the second-order intensity autocorrelation. 



A.1 Spectral-clipping and gain-narrowing effects 

In Section A.l, the effects of truncating the spectrum to a finite width and narrowing the 

spectrum are shown. Figs. A.1 and A.2 give the temporal profile and autocorrelation of 

the unmodified pulse. In Figs. A.3, A.4, A.7, and A.8, E(w) is changed to 

E(w) WI I w 5 w2 
E(w) = (A4 

0 otherwise 

where w1 = 2xc/(850 nm) and w2 = 2nc/(790 nm). In Figs. A.5-A.8, E(w) is modified 

such that 

where 0 = .084 fs-r. This has the effect of narrowing the spectrum to 20 nm (FWHM). 
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Figure A.1: Temporal pulse shape for no uncompensated phase, no spectral clipping, and 
no gain-narrowing. FWHM 33.0 fs with peak at 0. 
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Figure A.2: Second order autocorrelation for no uncompensated phase, no spectral clip- 
ping, and no gain-narrowing. FWHM 46.7 fs with peak at 0. 
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Figure A-3: Temporal pulse shape for no uncompensated phase and no gain-narrowing, 
but spectrum is truncated at f30 nm about center wavelength. FWHM 40.7 fs with peak 
at 0. 
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Figure A.4: Second-order autocorrelation for no uncompensated phase and no gain- 
narrowing, but spectrum is truncated at f30 nm about center wavelength. FWHM 55.1 
fs with peak at 0. 
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Figure A.5: Temporal pulse shape for no uncompensated phase and no spectral clipping, 
but spectrum is narrowed to 20 nm. FWHM 41.6 fs with peak at 0. 
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Figure A.6: Second-order autocorrelation for no uncompensated phase and no spectral 
clipping, but spectrum is narrowed to 20 nm. FWHM 58.8 fs with peak at 0. 

” 

-60 -40 -20 0 20 40 60 

Figure A.7: Temporal pulse shape for no uncompensated phase, but spectrum is truncated 
at f30 nm and spectrum is narrowed to 20 nm. FWHM 45.6 fs with peak at 0. 
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Figure 8.8: Second-order autocorrelation for no uncompensated phase, but spectrum is 
truncated at f30 nm and spectrum is narrowed to 20 nm. FWHM 62.6 fs with peak at 0. 
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A.2 Second-order residual phase effects 

For remainder of calculations, the spectrum will be clipped at f30 nm and narrowed to 

20 nm as in Fig. A.7. 
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Figure A.9: Temporal pulse shape for clipped, narrowed spectrum with Ap2 = 500 fs2, 
Aps = 0 fs3, Ap4 = 0 fs4, and A/?&, = 0 fs5. FWHM 50.3 fs with peak at 0. 
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Figure A.lO: Second-order autocorrelation for clipped, narrowed spectrum with AD2 = 500 
fs2, A@3 = 0 fs3, AD4 = 0 fs4, and A/35 = 0 fs5. FWHM 73.3 fs with peak at 0. 
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Figure A.11: Temporal pulse shape for clipped, narrowed spectrum with A@2 = 750 fs2, 
A03 = 0 fs3, A/34 = 0 fs4, and Aps = 0 fs5. FWHM 58.3 fs with peak at 0. 
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Figure A.12: Second-order autocorrelation for clipped, narrowed spectrum with A& = 750 
fs2, A& = 0 fs3, A/& = 0 fs4, and Afls = 0 fs5. FWHM 88.1 fs with peak at 0. 
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Figure A.13: Temporal pulse shape for clipped, narrowed spectrum with A& = 1000 fs2, 
A& = 0 fs3, Afl4 = 0 fs4, and A&, = 0 fs5. FWHM 74.1 fs with peak at 0. 
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Figure A.14: Second-order autocorrelation for clipped, narrowed spectrum with A& = 
1000 fs2, A/33 = 0 fs3, AD4 = 0 fs4, and A&, = 0 fs5. FWHM 108 fs with peak at 0. 



A.3 Third-order residual phase effects 
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Figure A.15: Temporal pulse shape for clipped, narrowed spectrum with AD2 = 0 fs2, 
AP3 = -20000 fs3, Ap4 = 0 fs4, and A/& = 0 fs5. FWHM 47.0 fs with peak at -11 fs. 
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Figure A.16: Second-order autocorrelation for clipped, narrowed spectrum with A/3, = 0 
fs2, A/33 = -20000 fs3, A/3, = 0 fs4, and A& = 0 fs5. FWHM 65.1 fs with peak at 0. 
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Figure A.17: Temporal pulse shape for clipped, narrowed spectrum with Afl2 = 0 fs2, 
A& = 20000 fs3, AD4 = 0 fs4, and A& = 0 fs5. FWHM 47.0 fs with peak at 11 fs. 
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Figure A.18: Second-order autocorrelation for clipped, narrowed spectrum with Af12 = 0 
fs2, AD3 = 20000 fs3, A& = 0 fs4, and A@, = 0 fs5. FWHM 65.1 fs with peak at 0. 
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Figure A.19: Temporal pulse shape for clipped, narrowed spectrum with A/?2 = 0 fs2, 
A& = 40000 fs3, AD4 = 0 fs4, and A& = 0 fs5. FWHM 51.6 fs with peak at 18 fs. 
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Figure A.20: Second-order autocorreiaiion for clipped, narrowed spectrum with Ap2 = 0 
fs2, A@3 = 40000 fs3, Ap4 = 0 fs4, and A& = 0 fs5. FWHM 72.8 fs with peak at 0. 
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Figure A.21: Temporal pulse shape for clipped, narrowed spectrum with A@J = 0 fs2, 
A/33 = 60000 fs3, A@4 = 0 fs4, and A05 = 0 fs5. FWHM 59.7 fs with peak at 25 fs. 
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Figure A-22: Second-order autocorrelation for clipped, narrowed spectrum with A& = 0 
fs2, A/33 = 60000 fs3, A/34 = 0 fs4, and A&J = 0 fs5. FWHM 83.6 fs with peak at 0. 
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A.4 Fourth-order residual phase effects 
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Figure A.23: Temporal pulse shape for clipped, narrowed spectrum with A& = 0 fs2, 
A& = 0 fs3, A~J = 10’ fs4, and A&, = 0 fs5. FWHM 49.9 fs with peak at 0. 
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Figure A.24: Second-order autocorrelation for clipped, narrowed spectrum with A& = 0 
fs2, A/33 = 0 fs3, A/34 = lo6 fs”, and A& = 0 fs5. FWHM 69.5 fs with peak at 0. 
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Figure A.25: Temporal pulse shape for clipped, narrowed spectrum with A& = 0 fs2, 
A/33 = 0 fs3, A/34 = 2.5 x lo6 fs4, and Afls = 0 fs5. FWHM 64.4 fs with peak at 0. 
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Figure A.26: Second-order autocorrelation for clipped, narrowed spectrum with A/3, = 0 
fs2, A& = 0 fs3, Ap4 = 2.5 x lo6 fs4, and A& = 0 fs5. FWHM 88.4 fs with peak at 0. 
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Figure A.27: Temporal pulse shape for clipped, narrowed spectrum with A& = 0 fs2, 
A/33 = 0 fs3, A& = 4 x lo6 fs4, and A& = 0 fs5. FWHM 68.8 fs with peak at 0. 
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Figure A.28: Second-order autocorrelation for clipped, narrowed spectrum with Ati2 = 0 
fs2, AD3 = 0 fs3, Ap4 = 4 x 106 fs4, and Aps = 0 fs5. FWHM 98.0 fs with peak at 0. 
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Figure A.29: Temporal pulse shape for clipped, narrowed spectrum with A& = 0 fs2, 
A@3 = 0 fs3, Ap4 = 5.5 X lo6 fs4, and A& = 0 fs5. FWHM 75.2 fs with peak at 0. 
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Figure A.30: Second-order autocorrelation for clipped, narrowed spectrum with AD2 = 0 
fs2, A& = 0 fs3, A/34 = 5.5 x lo6 fs4, and A&, = 0 fs5. FWHM 107 fs with peak at 0. 



A.5 Fifth-order residual phase effects 

time (fs) time (fs) 

Figure A.31: Temporal pulse shape for clipped, narrowed spectrum with AD2 = 0 fs2, 
A& = 0 fs3, AD4 = 0 fs4, and A& = 3 x lo7 fs5. FWHM 46.1 fs with peak at 2 fs. 
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Figure A.32: Second-order autocorrelation for clipped, narrowed spectrum with AD2 = 0 
fs2, A& = 0 fs3, A/?4 = 0 fs4, and Afls = 3 x lo7 fs5. FWHM 63.3 fs with peak at 0. 

.ii? 0.8 
I 

: 0.6 
u 

2 0.4 

g 0.2 

= nn 
” 

-60 -40 -20 0 20 40 60 

time (fs) 

-300 -200 -100 0 100 200 300 

time (fs) 

Figure A.33: Temporal pulse shape for clipped, narrowed spectrum with A& = 0 fs2, 
Apa = 0 fs3, A& = 0 fs4, and ADS = 6 x 107 fs5. FWHM 47.5 fs with peak at 7 fs. 
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Figure A.34: Second-order autocorrelation for clipped, narrowed spectrum with A& = 0 
fs2, A/& = 0 fs3, A@4 = 0 fs4, and A/35 = 6 x lo7 fs5. FWHM 65.4 fs with peak at 0. 
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Figure A.35: Temporal pulse shape for clipped, narrowed spectrum with A& = 0 fs2, 
A& = 0 fs3, A/34 = 0 fs4, and A,& = 9 x lo7 fs5. FWHM 49.7 fs with peak at 9 fs. 
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Figure A.36: Second-order autocorrelation for clipped, narrowed spectrum with Ap2 = 0 
fs2, Afia = 0 fs3, AD4 = 0 fs4, and AD5 = 9 x 107 fs5. FWHM 68.5 fs with peak at 0. 
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Figure A.37: Temporal pulse shape for clipped, narrowed spectrum with Ap2 = 0 fs2, 
A/& = 0 fs3, Ap4 = 0 fs4, and AD.5 = 1.2 x lo8 fs5. FWHM 52.5 fs with peak at 9 fs. 
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Figure A.38: Second-order autocorrelation for clipped, narrowed spectrum with AD2 = 0 
fs2, A& = 0 fs3, A@4 = 0 fs4, and A& = 1.2 x 10’ fs5. FWHM 71.9 fs with peak at 0. 



Appendix B 

Phasematching loci of biaxial 

tryst als 

In this appendix, the phasematching loci {8,, 4) are plotted for 8 biaxial crystals: lithium 

triborate (LBO), potassium titanyl phosphate (KTP), 1-arginine phosphate (LAP), deuter- 

ated LAP (d-LAP), potassium lathanum nitrate dihydrate (KLN), potassium cerium ni- 

trate dihydrate (KCN), barium magnesium fluoride (BMF), and lithium formate (LFM). 

The Sellmeier data for each crystal were taken from Ref. 96 with the exception of the ni- 

trates KLN and KCN. The Sellmeier data for these two crystals were taken from Ref. 98. 

The phasematching loci for Types I and II SHG as well. as Types I, II, and III direct THG 

are shown for fundamental wavelengths of 820 nm and 1053 nm. If no graph is given 

for a particular configuration, this indicates that it cannot be phasematched. Finally, in 

addition to the loci of angles for perfect phasematching of direct THG, contours are also 

shown for Ak = f50 and 100 cm-r. This will provide some information as to the angular 

sensitivity of the phase mismatch for direct THG. 
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Figure B.l: Phasematching loci for Type I (a) and Type II (b) SHG in LB0 at 820 nm. 
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Figure B.2: Phasematching loci for Type I (a) and Type II (b) SHG in LB0 at 1053 nm. 
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F igure B.3: Phasematching loci for Type I direct THG in LB0 at 1053 nm. Contours are 
drawn for Ak = -100, -5O,O, 50, and 100 cm-l. 
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Figure B.4: Phasematching loci for Type I SHG in KTP at 820 nm. 
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Figure B.5: Phasematching loci for Type I (a) and Type II (b) SHG in KTP at Figure B.5: Phasematching loci for Type I (a) and Type II (b) SHG in KTP at 

(b) 
1053 nm. 
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B.3 LAP 
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Figure B.6: Phasematching loci for Type I (a) and Type II (b) SHG in LAP at 820 nm. 
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Figure B.7: Phasematching loci for Type I direct THG in LAP at 820 nm. Contours are 
drawn for Ak = -100, -5O,O, 50, and 100 cm-‘. 
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{type I phasematching angles for crystal , 23) ('rype II phasematching angles for crystal , 23) 
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Figure B.8: Phasematching loci for Type I (a) and Type II (b) SHG in LAP at 1053 nm. 
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Figure B.9: Phasematching loci for Type I (a) and Type II (b) direct THG in LAP at 
1053 nm. Contours are drawn for Ak = -100, -5O,O, 50, and 100 cm-l. 
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B.4 d-LAP 
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Figure B.ll: Phasematching loci for Type I direct THG in d-LAP at 820 nm. Contours 
are drawn for AS = -100, -5O,O, 50, and 100 cm-‘. I 
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Figure B.12: Phasematching loci for Type I (a) and Type II (b) SHG in d-LAP at 1053 
nm. 
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Figure B.13: Phasematching loci for Type I (a) and Type II (b) direct THG in d-LAP at 
1053 nm. Contours are drawn for AS = -100, -5O,O, 50, and 100 cm-‘. 
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Figure B-14: Phasematching loci for Type I (a) and Type II (b) SHG in KLN at 820 nm. 
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Figure B.15: Phasematching loci for Type I (a) and Type II (b) SHG in KLN at 1053 nm. 
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Figure B.16: Phasematching loci for Type I direct THG in KLN at 1053 nm. Contours 
are drawn for AL = -100, -5O,O, 50, and 100 cm-‘. 
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B.6 KCN 
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Figure B.17: Phasematching loci for Type I (a) and Type II (b) SHG in KCN at 820 nm. 
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Figure B.18: Phasematching loci for Type I (a) and Type II (b) SHG in KCN at 1053 nm. 
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F igure B.19: Phasematching loci for Type I direct THG in KCN at 1053 nm. Contours 
are drawn for Ak = -100, -5O,O, 50, and 100 cm-l. 
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B.7 BMF 
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Figure B.20: Phasematching loci for Type I SHG in BMF at 820 nm. 
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Figure B.21: Phasematching loci for Type I (a) and Type II (b) SHG in BMF at 1053 
nm. 
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Figure B.22: Phasematching loci for Type I direct THG in BMF at 1053 nm. Contours 
are drawn for Ak = -100, -5O,O, 50, and 100 cm-‘. 
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Figure B.23: Phasematching loci for Type I (a) and Type II (b) SHG in LFM at 820 nm. 
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Figure B.24: Phasematching loci for Type I (a), Type II (b), and Type III (c) direct THG 
in LFM at 820 nm. Contours are drawn for Ak = -100, -5O,O, 50, and 100 cm-‘. 
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F igure B.25: Phasematching loci for Type I (a) and Type II (b) SHG in LFM at 1053 nm. 
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